-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
178 lines (126 loc) · 9.36 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import tensorflow as tf
import numpy as np
import tfplot
def _add_onehot_to_hash_table_average(onehot, string_ref):
table = tf.contrib.lookup.MutableHashTable(tf.string, tf.float32, 0)
unique_ref, uref_idx = tf.unique(string_ref)
unique_prob = tf.map_fn(lambda idx: tf.reduce_mean(tf.cast(tf.gather(onehot, tf.where(tf.equal(idx, uref_idx))), tf.float32)), tf.range(tf.size(unique_ref)), dtype=tf.float32)
update_table_op = table.insert(unique_ref, tf.divide(tf.add(table.lookup(unique_ref), unique_prob), 2.0))
return update_table_op, table.export()
def _create_bar_stats_figure(labels, probs):
labels = np.array([os.fsdecode(i) for i in labels])
fig, ax = tfplot.subplots()
ax.bar(np.arange(probs.size), probs, 0.35)
ax.set_xticks(np.arange(labels.size))
ax.set_xticklabels(labels, rotation=+90, ha='center')
fig.set_tight_layout(True)
return fig
def _sort_labels(labels):
labels = np.array([os.fsdecode(i) for i in labels])
vcc = [[i.replace(' ', ''), j.replace(' ', '')] for i, j in [lb.split(' x ') for lb in labels]]
slb = [sorted(i) for i in vcc]
sorted_labels = np.array([''.join([c[0], ' x ', c[1]]) for c in slb], np.chararray)
return sorted_labels
def _create_confusion_image(confusion_data):
fig, ax = tfplot.subplots()
ax.imshow(confusion_data)
fig.set_size_inches(8, 8)
return fig
def _create_wrong_example_plot(wis, whs, winst, wtypes, wids):
winst = [os.fsdecode(i) for i in winst]
wtypes = [os.fsdecode(i) for i in wtypes]
mb = np.random.randint(0,wis.shape[0])
fig, [ax1, ax2] = tfplot.subplots(2,1)
ax1.plot(wis[mb, 0, :, 0])
ax1.plot(wis[mb, 0, :, 1])
ax1.set_title(winst[mb] + ' | ' + wtypes[mb] + ' | id: ' + str(wids[mb]))
ax2.imshow(whs[mb, :, :, 0])
fig.set_size_inches(8, 8)
return fig
def collect_wrong_examples(correct, ins, rkhs, instcombs, typecombs, ids, files):
sorted_inst = tf.py_func(_sort_labels, [instcombs], tf.string)
sorted_type = tf.py_func(_sort_labels, [typecombs], tf.string)
whs = tf.squeeze(tf.gather(rkhs, tf.where(tf.logical_not(correct))), axis=1)
wis = tf.squeeze(tf.gather(ins, tf.where(tf.logical_not(correct))), axis=1)
winst = tf.squeeze(tf.gather(sorted_inst, tf.where(tf.logical_not(correct))), axis=1)
wtypes = tf.squeeze(tf.gather(sorted_type, tf.where(tf.logical_not(correct))), axis=1)
wids = tf.squeeze(tf.gather(ids, tf.where(tf.logical_not(correct))), axis=1)
wfiles = tf.squeeze(tf.gather(files, tf.where(tf.logical_not(correct))), axis=1)
fig = tfplot.plot(_create_wrong_example_plot, [wis, whs, winst, wtypes, wids])
tf.summary.image('wrong_examples', tf.expand_dims(fig, 0), max_outputs=1)
tf.summary.text('wrong_ids', tf.reduce_join(tf.as_string(wids), axis=0, separator=','))
tf.summary.text('wrong_files', wfiles)
return
def add_genre_stats(correct1, correct5, genre, train_test_table_selector):
with tf.name_scope('genreStats') as scope:
update_train_top1_table, export_train_top1_table = _add_onehot_to_hash_table_average(correct1, genre)
update_train_top5_table, export_train_top5_table = _add_onehot_to_hash_table_average(correct5, genre)
update_test_top1_table, export_test_top1_table = _add_onehot_to_hash_table_average(correct1, genre)
update_test_top5_table, export_test_top5_table = _add_onehot_to_hash_table_average(correct5, genre)
update_top1_table, export_top1_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top1_table, export_train_top1_table], lambda: [update_test_top1_table, export_test_top1_table])
update_top5_table, export_top5_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top5_table, export_train_top5_table], lambda: [update_test_top5_table, export_test_top5_table])
top1_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top1_table[0], export_top1_table[1]])
top5_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top5_table[0], export_top5_table[1]])
tf.summary.image('top1_genre', tf.expand_dims(top1_plot_op, 0), max_outputs=1)
tf.summary.image('top5_genre', tf.expand_dims(top5_plot_op, 0), max_outputs=1)
reset_tables = tf.local_variables_initializer()
return [update_top1_table, update_top5_table], reset_tables
def add_inst_stats(correct1, correct5, instcombs, train_test_table_selector):
with tf.name_scope('instStats') as scope:
sorted_labels = tf.py_func(_sort_labels, [instcombs], tf.string)
update_train_top1_table, export_train_top1_table = _add_onehot_to_hash_table_average(correct1, sorted_labels)
update_train_top5_table, export_train_top5_table = _add_onehot_to_hash_table_average(correct5, sorted_labels)
update_test_top1_table, export_test_top1_table = _add_onehot_to_hash_table_average(correct1, sorted_labels)
update_test_top5_table, export_test_top5_table = _add_onehot_to_hash_table_average(correct5, sorted_labels)
update_top1_table, export_top1_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top1_table, export_train_top1_table], lambda: [update_test_top1_table, export_test_top1_table])
update_top5_table, export_top5_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top5_table, export_train_top5_table], lambda: [update_test_top5_table, export_test_top5_table])
# top1_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top1_table[0], export_top1_table[1]])
# top5_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top5_table[0], export_top5_table[1]])
# tf.summary.image('top1_instcomb', tf.expand_dims(top1_plot_op, 0), max_outputs=1)
# tf.summary.image('top5_instcomb', tf.expand_dims(top5_plot_op, 0), max_outputs=1)
top_sorted = tf.nn.top_k(export_top1_table[1], k=tf.shape(export_top1_table[1])[0], sorted=True)
sidx = top_sorted.indices
tf.summary.text('top1_instcomb', tf.string_join([tf.gather(export_top1_table[0], sidx), tf.as_string(tf.gather(export_top1_table[1], sidx))], separator=' - '))
tf.summary.text('top5_instcomb', tf.string_join([tf.gather(export_top5_table[0], sidx), tf.as_string(tf.gather(export_top5_table[1], sidx))], separator=' - '))
reset_tables = tf.local_variables_initializer()
return [update_top1_table, update_top5_table], reset_tables
def add_comb_stats(correct1, correct5, typecombs, train_test_table_selector):
with tf.name_scope('combStats') as scope:
sorted_typecomb_labels = tf.py_func(_sort_labels, [typecombs], tf.string)
update_train_top1_table, export_train_top1_table = _add_onehot_to_hash_table_average(correct1, sorted_typecomb_labels)
update_train_top5_table, export_train_top5_table = _add_onehot_to_hash_table_average(correct5, sorted_typecomb_labels)
update_test_top1_table, export_test_top1_table = _add_onehot_to_hash_table_average(correct1, sorted_typecomb_labels)
update_test_top5_table, export_test_top5_table = _add_onehot_to_hash_table_average(correct5, sorted_typecomb_labels)
update_top1_table, export_top1_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top1_table, export_train_top1_table], lambda: [update_test_top1_table, export_test_top1_table])
update_top5_table, export_top5_table = tf.cond(tf.equal(train_test_table_selector, 0),
lambda: [update_train_top5_table, export_train_top5_table], lambda: [update_test_top5_table, export_test_top5_table])
top1_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top1_table[0], export_top1_table[1]])
top5_plot_op = tfplot.plot(_create_bar_stats_figure, [export_top5_table[0], export_top5_table[1]])
tf.summary.image('top1_typecomb', tf.expand_dims(top1_plot_op, 0), max_outputs=1)
tf.summary.image('top5_typecomb', tf.expand_dims(top5_plot_op, 0), max_outputs=1)
reset_tables = tf.local_variables_initializer()
return [update_top1_table, update_top5_table], reset_tables
def add_confusion_matrix(logits, labels):
with tf.name_scope('confusionMatrix') as scope:
predictions = tf.argmax(logits,1)
confusion = tf.confusion_matrix(labels=labels, predictions=predictions)
confusion_img = tfplot.plot(_create_confusion_image, [confusion])
tf.summary.image('confusion_matrix', tf.expand_dims(confusion_img,0), max_outputs=1)
def add_summaries(loss, eval1, eval5):
with tf.name_scope('summ') as scope:
avg_loss, avg_loss_op = tf.contrib.metrics.streaming_mean(loss)
avg_top1, avg_top1_op = tf.contrib.metrics.streaming_mean(eval1)
avg_top5, avg_top5_op = tf.contrib.metrics.streaming_mean(eval5)
# vars = tf.contrib.framework.get_variables(scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
# reset_op = tf.variables_initializer(vars)
reset_op = tf.local_variables_initializer()
tf.summary.scalar('avg_loss', avg_loss)
tf.summary.scalar('avg_top1', avg_top1)
tf.summary.scalar('avg_top5', avg_top5)
return avg_loss_op, avg_top1_op, avg_top5_op, reset_op