-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepareData.py
233 lines (175 loc) · 9.67 KB
/
prepareData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import time
import multiprocessing
import tensorflow as tf
import numpy as np
import yaml
import os
from subprocess import call
train_rate = 0.8
maxSamplesDelay = 44100 #88200_1024 44100_512 22050_256
#### n of dataset augmentation
nexpan = 10
#### ENCODE PARAMS
blocksize = 512
maxBlockDelay = 1 + maxSamplesDelay // blocksize
#### PATHs
dataroot = '/home/pepeu/workspace/Dataset/'
# dataroot = '/home/pepeu/DATA_DRIVE/DATASETS/MedleyDB'
active_dir = dataroot + '/ACTIVATION_CONF'
metadata_dir = dataroot + '/METADATA/'
audio_dir = dataroot + '/Audio/'
tfrecordfile = '/home/pepeu/workspace/Dataset/SME_bitrate_medleydb_xpan' + str(nexpan) + '_split' + str(int(train_rate * 10)) + '_blocksize' + str(blocksize) + '.tfrecord'
#### Dataset type classification
rythm = ['gong', 'auxiliary percussion', 'bass drum', 'bongo', 'chimes', 'claps', 'cymbal', 'drum machine', 'darbuka', 'glockenspiel', 'doumbek', 'drum set', 'kick drum', 'shaker', 'snare drum',
'tabla', 'tambourine', 'timpani', 'toms', 'vibraphone']
eletronic = ['Main System', 'fx/processed sound', 'sampler', 'scratches']
strings = ['gu', 'zhongruan', 'liuqin', 'guzheng', 'erhu', 'harp', 'electric bass', 'acoustic guitar', 'banjo', 'cello', 'cello section', 'clean electric guitar', 'distorted electric guitar',
'double bass', 'lap steel guitar', 'mandolin', 'string section', 'viola', 'viola section', 'violin', 'violin section', 'yangqin', 'zhongruan']
brass = ['piccolo', 'soprano saxophone', 'horn section', 'alto saxophone', 'bamboo flute', 'baritone saxophone', 'bass clarinet', 'bassoon', 'brass section', 'clarinet', 'clarinet section', 'dizi',
'flute', 'flute section', 'french horn', 'french horn section', 'oboe', 'oud', 'tenor saxophone', 'trombone', 'trombone section', 'trumpet', 'trumpet section', 'tuba']
voice = ['female singer', 'male rapper', 'male singer', 'male speaker', 'vocalists']
melody = ['electric piano', 'accordion', 'piano', 'synthesizer', 'tack piano', 'harmonica', 'melodica']
tps = {'rythm': rythm, 'electronic': eletronic, 'strings': strings, 'brass': brass, 'voice': voice, 'melody': melody}
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def floats_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def insert_delay_and_gather_bitratesignal(audiofile, delay, blocksize):
path, filename = os.path.split(audiofile)
basename = os.path.splitext(filename)[0]
dlyfilename = basename + '_SME_blocksize' + str(blocksize) + '_dly' + str(delay)
itsoffset = (1 / 44100) * delay
if not os.path.isfile(path + '/' + dlyfilename + '.npy'):
cmd = 'ffmpeg -hide_banner -nostats -loglevel 0 -y -ss ' + str(itsoffset) + ' -i ' + audiofile \
+ ' -acodec flac -frame_size ' + str(blocksize) + ' -f flac - | ffprobe - -hide_banner -loglevel 0 -show_frames > ' + path + '/' + dlyfilename + '.ana'
os.system(cmd)
try:
tmpf = open(path + '/' + dlyfilename + '.ana', 'r')
fstr = tmpf.read(-1)
tmpf.close()
except IOError:
print('################# AUDIO IO ERROR on file ' + dlyfilename + '.ana' + ' ###################')
return -1, -1
kval = np.array([l.split('=') for l in fstr.replace('[/FRAME]', 'FRAME=0').replace('[FRAME]', 'FRAME=0').split()])
if kval.ndim < 2:
return -1, -1
idx = np.nonzero(kval[:, 0] == 'pkt_size')
bitratesignal = np.squeeze(kval[idx, 1])
bitratesignal = np.int32(bitratesignal)[maxBlockDelay:]
bitratesignal = np.float32((bitratesignal - np.mean(bitratesignal)) / np.std(bitratesignal)) ## standardization
np.save(path + '/' + dlyfilename, bitratesignal)
# bitratesignal.tofile(path + '/' + dlyfilename + '.bin')
call(('rm -f ' + path + '/' + dlyfilename + '.ana').split())
else:
# print ('recovering from file ' + dlyfilename + '.bin')
bitratesignal = np.load(path + '/' + dlyfilename + '.npy')
# bitratesignal = np.fromfile(path + '/' + dlyfilename + '.bin', np.float32)
return bitratesignal, delay // blocksize
def resample_labvec(reftime, labvec, dly):
dtime = np.diff(reftime)
labt = np.concatenate((np.zeros(dly, np.float32), np.hstack([np.ones(int(dtime[i] / (1 / 44100)), np.float32) * labvec[i] for i in range(dtime.size)])), axis=0)
labmat = np.resize(labt, [np.ceil(labt.size / blocksize).astype(np.int32), blocksize])
labmean = np.mean(labmat, axis=1)[maxBlockDelay:]
return labmean
def compute_vbr(params):
audiofile = params[0]
samples_delay = params[1]
blocksize = params[2]
labvec = params[3]
reftime = params[4]
sig, delay = insert_delay_and_gather_bitratesignal(audiofile, samples_delay, blocksize)
labm = resample_labvec(reftime, labvec, samples_delay)
return sig, delay, labm
def get_class(inst1, inst2, type1, type2):
if inst1 == inst2:
combClass = 5
elif type1 == type2:
combClass = 4
elif type1 != 'voice' and type2 != 'voice':
combClass = 3
elif type1 == 'voice' or type2 == 'voice':
combClass = 2
else:
combClass = 1
return combClass
def create_tf_example(yml, st1, st2, id, cclass, istrain):
tf_example = tf.train.Example(features=tf.train.Features(feature={
'comb/id': int64_feature(id),
'comb/class': int64_feature(cclass),
'comb/genre': bytes_feature(os.fsencode(yml['genre'])),
'comb/inst1': bytes_feature(os.fsencode(st1['instrument'])),
'comb/inst2': bytes_feature(os.fsencode(st2['instrument'])),
'comb/type1': bytes_feature(os.fsencode(st1['type'])),
'comb/type2': bytes_feature(os.fsencode(st2['type'])),
'comb/file1': bytes_feature(os.fsencode(yml['stem_dir'] + '/' + st1['filename'])),
'comb/file2': bytes_feature(os.fsencode(yml['stem_dir'] + '/' + st2['filename'])),
'comb/sig1': bytes_feature(st1['VBR']['signal'].tostring()),
'comb/sig2': bytes_feature(st2['VBR']['signal'].tostring()),
'comb/lab1': bytes_feature(st1['VBR']['labvec'].tostring()),
'comb/lab2': bytes_feature(st2['VBR']['labvec'].tostring()),
'comb/sig1_sample_delay': int64_feature(st1['sample_delay']),
'comb/sig2_sample_delay': int64_feature(st2['sample_delay']),
'comb/ref': int64_feature(st2['VBR']['vbr_delay'] - st1['VBR']['vbr_delay']),
'comb/label': int64_feature(st2['VBR']['vbr_delay'] - st1['VBR']['vbr_delay'] + maxBlockDelay + 1),
'comb/istrain': int64_feature(int(istrain))
}))
return tf_example
np.random.seed(0)
options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
writer = tf.python_io.TFRecordWriter(tfrecordfile, options=options)
audiodir = os.fsencode(audio_dir)
metdir = os.fsencode(metadata_dir)
activedir = os.fsencode(active_dir)
pool = multiprocessing.Pool(processes=12)
id = 1
lost = 0
rng1 = np.random.RandomState(0)
rng2 = np.random.RandomState(1)
print('starting for bs ' + str(blocksize))
try:
for xpan in range(nexpan):
for file in sorted(os.listdir(metdir)):
yml = yaml.load(open(os.path.join(metdir, file), 'r').read(-1))
lab = open(os.path.join(activedir, file.split(b'_METADATA.yaml')[0] + b'_ACTIVATION_CONF.lab'), 'r').read(-1)
labmat = np.stack([np.fromstring(lb, dtype=np.float32, sep=',') for lb in lab.split('\n')[1:-1]])
sdir = yml['stem_dir']
stems = yml['stems']
nstems = len(stems)
combparams = list()
st = time.time()
pool_params = []
for s, stem in enumerate(stems):
samples_delay = rng1.randint(0, maxSamplesDelay)
stems[stem]['sample_delay'] = samples_delay
reftime = labmat[:, 0]
if s + 1 > labmat.shape[1] - 1:
labvec = np.ones(labmat.shape[0], np.float32)
else:
labvec = labmat[:, s + 1]
pool_params.append([audio_dir + '/' + yml['stem_dir'] + '/' + stems[stem]['filename'], samples_delay, blocksize, labvec, reftime])
sig_delay_lab = pool.map(compute_vbr, pool_params)
for s, stem in enumerate(stems):
stems[stem]['VBR'] = {}
stems[stem]['VBR']['signal'] = sig_delay_lab[s][0]
stems[stem]['VBR']['vbr_delay'] = sig_delay_lab[s][1]
stems[stem]['VBR']['labvec'] = sig_delay_lab[s][2]
stems[stem]['type'] = list(tps.keys())[np.nonzero([s.count(stems[stem]['instrument']) for s in tps.values()])[0][0]]
for s1 in range(nstems):
for s2 in range(s1 + 1, nstems):
istrain = rng2.randint(0, 100) < train_rate * 100
st1 = stems['S%02d' % (s1 + 1)]
st2 = stems['S%02d' % (s2 + 1)]
if type(st1['VBR']['signal']) == int or type(st2['VBR']['signal']) == int:
continue
cclass = get_class(st1['instrument'], st2['instrument'], st1['type'], st2['type'])
tf_example = create_tf_example(yml, st1, st2, id, cclass, istrain)
writer.write(tf_example.SerializeToString())
id += 1
print('################################ processed data from ' + yml['mix_filename'] + ' from xpan ' + str(xpan) + ' in ' + str(time.time() - st))
finally:
pool.terminate()
writer.close()
print('*********************** Total combinations written to tfrecorf file is ' + str(id))
print('*********************** Total combinations lost ' + str(lost))