-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlpc.py
95 lines (75 loc) · 2.07 KB
/
lpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import wave
import math
from audiolazy.lazy_lpc import lpc
import matplotlib.pyplot as plt
def golomb_cod(x,m):
c = int(math.ceil(math.log(m,2)))
remin = x % m
quo =int(math.floor(x / m))
#print "quo is",quo
#print "reminder",remin
#print "c",c
div = int(math.pow(2,c) - m)
#print "div",div
first = ""
for i in range(quo):
first = first + "1"
#print first
if (remin < div):
b = c - 1
a = "{0:0" + str(b) + "b}"
#print "1",a.format(remin)
bi = a.format(remin)
else:
b = c
a = "{0:0" + str(b) + "b}"
#print "2",a.format(remin+div)
bi = a.format(remin+div)
final = first + "0" +str(bi)
#print "final",final
return final
filename = '/home/pepeu/DATA_DRIVE/DATASETS/MedleyDB/Audio/AClassicEducation_NightOwl_STEMS/AClassicEducation_NightOwl_STEM_02.wav'
# Read from file.
spf = wave.open(filename, 'r')
# Get file as numpy array.
x = spf.readframes(-1)
x = np.fromstring(x, 'Int16')
wi = 10.9
bsize = 512
wb = np.int(np.floor(wi * bsize))
we = np.int(np.floor(wb + bsize))
xw = x[wb:we]
# xw = (x[wb:we] - np.mean(x[wb:we])) / np.std(x[wb:we])
ncoef = 8
afilt = lpc(xw, ncoef)
residual = list(afilt(xw))
sfilt = 1 / afilt
yw = list(sfilt(residual))
plt.figure(figsize=(16,4))
plt.plot(xw[4:], label='Reference')
plt.plot(xw[4:] - np.array(residual)[4:], label='Linear Approximation')
plt.ylabel('Amplitude')
plt.xlabel('Audio Samples')
plt.legend()
# plt.title('ncoeff ' + str(ncoef))
plt.figure(figsize=(16,4))
plt.plot(np.array(residual)[4:], label='Residual')
plt.ylabel('Amplitude')
plt.xlabel('Audio Samples')
# plt.legend()
m = 16
wsize = 8
wcodesize = []
xmat = np.resize(np.array(residual).astype(np.int32), [-1, wsize])
for w in range(xmat.shape[0]):
bitcount = 0
for s in range(xmat.shape[1]):
bitcount += len(golomb_cod(xmat[w,s],m))
wcodesize.append(bitcount)
bitaxis = []
for e in wcodesize:
bitaxis.append(e*np.ones(wsize))
bitaxis = np.array(bitaxis).reshape(-1)
plt.plot(bitaxis, label='Bit Rate')
plt.legend()