-
-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathcontinuous_driver.py
301 lines (242 loc) · 12.7 KB
/
continuous_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import sys
import time
import random
import numpy as np
import argparse
import logging
import pickle
import torch
from distutils.util import strtobool
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from encoder_init import EncodeState
from networks.on_policy.ppo.agent import PPOAgent
from simulation.connection import ClientConnection
from simulation.environment import CarlaEnvironment
from parameters import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--exp-name', type=str, help='name of the experiment')
parser.add_argument('--env-name', type=str, default='carla', help='name of the simulation environment')
parser.add_argument('--learning-rate', type=float, default=PPO_LEARNING_RATE, help='learning rate of the optimizer')
parser.add_argument('--seed', type=int, default=SEED, help='seed of the experiment')
parser.add_argument('--total-timesteps', type=int, default=TOTAL_TIMESTEPS, help='total timesteps of the experiment')
parser.add_argument('--action-std-init', type=float, default=ACTION_STD_INIT, help='initial exploration noise')
parser.add_argument('--test-timesteps', type=int, default=TEST_TIMESTEPS, help='timesteps to test our model')
parser.add_argument('--episode-length', type=int, default=EPISODE_LENGTH, help='max timesteps in an episode')
parser.add_argument('--train', default=True, type=boolean_string, help='is it training?')
parser.add_argument('--town', type=str, default="Town07", help='which town do you like?')
parser.add_argument('--load-checkpoint', type=bool, default=MODEL_LOAD, help='resume training?')
parser.add_argument('--torch-deterministic', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True, help='if toggled, `torch.backends.cudnn.deterministic=False`')
parser.add_argument('--cuda', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True, help='if toggled, cuda will not be enabled by deafult')
args = parser.parse_args()
return args
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def runner():
#========================================================================
# BASIC PARAMETER & LOGGING SETUP
#========================================================================
args = parse_args()
exp_name = args.exp_name
train = args.train
town = args.town
checkpoint_load = args.load_checkpoint
total_timesteps = args.total_timesteps
action_std_init = args.action_std_init
try:
if exp_name == 'ppo':
run_name = "PPO"
else:
"""
Here the functionality can be extended to different algorithms.
"""
sys.exit()
except Exception as e:
print(e.message)
sys.exit()
if train == True:
writer = SummaryWriter(f"runs/{run_name}_{action_std_init}_{int(total_timesteps)}/{town}")
else:
writer = SummaryWriter(f"runs/{run_name}_{action_std_init}_{int(total_timesteps)}_TEST/{town}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}" for key, value in vars(args).items()])))
#Seeding to reproduce the results
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
action_std_decay_rate = 0.05
min_action_std = 0.05
action_std_decay_freq = 5e5
timestep = 0
episode = 0
cumulative_score = 0
episodic_length = list()
scores = list()
deviation_from_center = 0
distance_covered = 0
#========================================================================
# CREATING THE SIMULATION
#========================================================================
try:
client, world = ClientConnection(town).setup()
logging.info("Connection has been setup successfully.")
except:
logging.error("Connection has been refused by the server.")
ConnectionRefusedError
if train:
env = CarlaEnvironment(client, world,town)
else:
env = CarlaEnvironment(client, world,town, checkpoint_frequency=None)
encode = EncodeState(LATENT_DIM)
#========================================================================
# ALGORITHM
#========================================================================
try:
time.sleep(0.5)
if checkpoint_load:
chkt_file_nums = len(next(os.walk(f'checkpoints/PPO/{town}'))[2]) - 1
chkpt_file = f'checkpoints/PPO/{town}/checkpoint_ppo_'+str(chkt_file_nums)+'.pickle'
with open(chkpt_file, 'rb') as f:
data = pickle.load(f)
episode = data['episode']
timestep = data['timestep']
cumulative_score = data['cumulative_score']
action_std_init = data['action_std_init']
agent = PPOAgent(town, action_std_init)
agent.load()
else:
if train == False:
agent = PPOAgent(town, action_std_init)
agent.load()
for params in agent.old_policy.actor.parameters():
params.requires_grad = False
else:
agent = PPOAgent(town, action_std_init)
if train:
#Training
while timestep < total_timesteps:
observation = env.reset()
observation = encode.process(observation)
current_ep_reward = 0
t1 = datetime.now()
for t in range(args.episode_length):
# select action with policy
action = agent.get_action(observation, train=True)
observation, reward, done, info = env.step(action)
if observation is None:
break
observation = encode.process(observation)
agent.memory.rewards.append(reward)
agent.memory.dones.append(done)
timestep +=1
current_ep_reward += reward
if timestep % action_std_decay_freq == 0:
action_std_init = agent.decay_action_std(action_std_decay_rate, min_action_std)
if timestep == total_timesteps -1:
agent.chkpt_save()
# break; if the episode is over
if done:
episode += 1
t2 = datetime.now()
t3 = t2-t1
episodic_length.append(abs(t3.total_seconds()))
break
deviation_from_center += info[1]
distance_covered += info[0]
scores.append(current_ep_reward)
if checkpoint_load:
cumulative_score = ((cumulative_score * (episode - 1)) + current_ep_reward) / (episode)
else:
cumulative_score = np.mean(scores)
print('Episode: {}'.format(episode),', Timestep: {}'.format(timestep),', Reward: {:.2f}'.format(current_ep_reward),', Average Reward: {:.2f}'.format(cumulative_score))
if episode % 10 == 0:
agent.learn()
agent.chkpt_save()
chkt_file_nums = len(next(os.walk(f'checkpoints/PPO/{town}'))[2])
if chkt_file_nums != 0:
chkt_file_nums -=1
chkpt_file = f'checkpoints/PPO/{town}/checkpoint_ppo_'+str(chkt_file_nums)+'.pickle'
data_obj = {'cumulative_score': cumulative_score, 'episode': episode, 'timestep': timestep, 'action_std_init': action_std_init}
with open(chkpt_file, 'wb') as handle:
pickle.dump(data_obj, handle)
if episode % 5 == 0:
writer.add_scalar("Episodic Reward/episode", scores[-1], episode)
writer.add_scalar("Cumulative Reward/info", cumulative_score, episode)
writer.add_scalar("Cumulative Reward/(t)", cumulative_score, timestep)
writer.add_scalar("Average Episodic Reward/info", np.mean(scores[-5]), episode)
writer.add_scalar("Average Reward/(t)", np.mean(scores[-5]), timestep)
writer.add_scalar("Episode Length (s)/info", np.mean(episodic_length), episode)
writer.add_scalar("Reward/(t)", current_ep_reward, timestep)
writer.add_scalar("Average Deviation from Center/episode", deviation_from_center/5, episode)
writer.add_scalar("Average Deviation from Center/(t)", deviation_from_center/5, timestep)
writer.add_scalar("Average Distance Covered (m)/episode", distance_covered/5, episode)
writer.add_scalar("Average Distance Covered (m)/(t)", distance_covered/5, timestep)
episodic_length = list()
deviation_from_center = 0
distance_covered = 0
if episode % 100 == 0:
agent.save()
chkt_file_nums = len(next(os.walk(f'checkpoints/PPO/{town}'))[2])
chkpt_file = f'checkpoints/PPO/{town}/checkpoint_ppo_'+str(chkt_file_nums)+'.pickle'
data_obj = {'cumulative_score': cumulative_score, 'episode': episode, 'timestep': timestep, 'action_std_init': action_std_init}
with open(chkpt_file, 'wb') as handle:
pickle.dump(data_obj, handle)
print("Terminating the run.")
sys.exit()
else:
#Testing
while timestep < args.test_timesteps:
observation = env.reset()
observation = encode.process(observation)
current_ep_reward = 0
t1 = datetime.now()
for t in range(args.episode_length):
# select action with policy
action = agent.get_action(observation, train=False)
observation, reward, done, info = env.step(action)
if observation is None:
break
observation = encode.process(observation)
timestep +=1
current_ep_reward += reward
# break; if the episode is over
if done:
episode += 1
t2 = datetime.now()
t3 = t2-t1
episodic_length.append(abs(t3.total_seconds()))
break
deviation_from_center += info[1]
distance_covered += info[0]
scores.append(current_ep_reward)
cumulative_score = np.mean(scores)
print('Episode: {}'.format(episode),', Timestep: {}'.format(timestep),', Reward: {:.2f}'.format(current_ep_reward),', Average Reward: {:.2f}'.format(cumulative_score))
writer.add_scalar("TEST: Episodic Reward/episode", scores[-1], episode)
writer.add_scalar("TEST: Cumulative Reward/info", cumulative_score, episode)
writer.add_scalar("TEST: Cumulative Reward/(t)", cumulative_score, timestep)
writer.add_scalar("TEST: Episode Length (s)/info", np.mean(episodic_length), episode)
writer.add_scalar("TEST: Reward/(t)", current_ep_reward, timestep)
writer.add_scalar("TEST: Deviation from Center/episode", deviation_from_center, episode)
writer.add_scalar("TEST: Deviation from Center/(t)", deviation_from_center, timestep)
writer.add_scalar("TEST: Distance Covered (m)/episode", distance_covered, episode)
writer.add_scalar("TEST: Distance Covered (m)/(t)", distance_covered, timestep)
episodic_length = list()
deviation_from_center = 0
distance_covered = 0
print("Terminating the run.")
sys.exit()
finally:
sys.exit()
if __name__ == "__main__":
try:
runner()
except KeyboardInterrupt:
sys.exit()
finally:
print('\nExit')