-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·324 lines (275 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
from mozi.layers.activation import *
from mozi.layers.normalization import *
from mozi.layers.convolution import Convolution2D, Pooling2D
from mozi.layers.linear import Linear
from mozi.layers.noise import Dropout
from mozi.layers.misc import Flatten, Parallel, Crop
from mozi.layers.preprocessor import Scale
from mozi.model import Sequential
from mozi.learning_method import *
from mozi.log import Log
import theano.tensor as T
from mozi.datasets.dataset import MultiInputsData, SingleBlock
import numpy as np
from mozi.train_object import TrainObject
import mozi.datasets.preprocessor as proc
from mozi.datasets.mnist import Mnist
from mozi.datasets.cifar10 import Cifar10
import argparse
import cPickle
import os
import sys
import pandas
import glob
import cv2
from cost import *
from mozi.cost import entropy
import socket
import glob
desc = \
'''
image segmentation
'''
#####[ PARAMS ]#####
experiment_name = 'img_segment_0410'
img_gcn = proc.GCN_IMG(subtract_mean=True, use_std=True)
img_scale = proc.Scale(global_max=255, global_min=0, scale_range=[0,1], buffer=0.)
img_preprocess = proc.Pipeline([img_scale])
# img_preprocess = None
# img_preprocess = proc.Pipeline([img_scale, img_gcn])
# _IMG_INPUT_DIM_ = (3, 400, 400)
_IMG_INPUT_DIM_ = (3, 128, 128)
save_model = True
batch_size = 32
train_valid_test_ratio = [9,1,0]
lr = 0.01
lr_decay_factor = 0.9
decay_batch = None
momentum = 0.9
short_memory = 0.1
# load_model = 'two_channel_dnn_0321_20160322_0045_57585880'
load_model = None
threshold = 0.5
img_augment = False
PROJ_DIR = os.path.dirname(os.path.realpath(__file__))
verbose = True
gamma = 0.1
###################
def mse_iou(y, ypred):
return mse(y, ypred) + gamma * iou(y, ypred)
valid_cost = iou
train_cost = mse
# train_cost = iou
# train_cost = nocost
# train_cost = mse_iou
# train_cost = logiou
train_cost = smoothiou
def make_Xy(args, img_augment=False):
images = glob.glob(args.input_dir + '/Image/*.' + args.extension)
X = []
y = []
c, h, w = _IMG_INPUT_DIM_
for imgpath in images:
X_img = []
y_img = []
imgx = cv2.imread(imgpath)
ddir = os.path.dirname(imgpath)
ddir = os.path.dirname(ddir)
lbldir = ddir + '/Label'
fname = os.path.basename(imgpath)
fname = fname.replace('.' + args.extension, '')
lblpath = lbldir + '/' + args.label_pattern.replace('%', fname)
imgy = cv2.imread(lblpath)
imgx = cv2.resize(imgx, (w,h))
imgy = cv2.resize(imgy, (w,h))
X_img.append(imgx)
y_img.append(imgy)
if img_augment:
imh, imw, imc = imgx.shape
# scales = [0.5, 0.6, 0.7, 0.8]
# scales = [0.5, 0.8]
# pts2s = []
# for scale in scales:
# pts21 = np.float32([[0,0],[scale*imw,imh],[imw,0],[imw,imh]])
# pts22 = np.float32([[0,0],[0,scale*imh],[imw,0],[imw,imh]])
# pts23 = np.float32([[0,0],[0,imh],[scale*imw,0],[imw,imh]])
# pts24 = np.float32([[0,0],[0,imh],[imw,scale*imh],[imw,imh]])
# pts25 = np.float32([[0,0],[0,imh],[imw,0],[scale*imw,imh]])
# pts26 = np.float32([[0,0],[0,imh],[imw,0],[imw,scale*imh]])
# pts27 = np.float32([[scale*imw,0],[scale*imw,imh],[imw,0],[imw,imh]])
# pts28 = np.float32([[0,scale*imh],[scale*imw,imh],[imw,0],[imw,imh]])
# pts2s += [pts21, pts22, pts23, pts24, pts25, pts26, pts27, pts28]
#
#
# pts1 = np.float32([[0,0],[0,imh],[imw,0],[imw,imh]])
# for pts2 in pts2s:
# m = cv2.getPerspectiveTransform(pts1,pts2)
# dstx = cv2.warpPerspective(imgx,m,(imw,imh))
# dsty = cv2.warpPerspective(imgy,m,(imw,imh))
# dstx = cv2.resize(dstx, (w,h))
# dsty = cv2.resize(dsty, (w,h))
# X_img.append(dstx)
# y_img.append(dsty)
rotx = []
roty = []
for imgx, imgy in zip(X_img, y_img):
for angle in [90, 180, 270]:
m = cv2.getRotationMatrix2D((w/2,h/2), angle, 1)
dstx = cv2.warpAffine(imgx, m, (w,h))
dsty = cv2.warpAffine(imgy, m, (w,h))
rotx.append(dstx)
roty.append(dsty)
X_img += rotx
y_img += roty
newy = []
for imgy in y_img:
imgy = cv2.cvtColor(imgy, cv2.COLOR_BGR2GRAY)
imgy = (imgy > 255/2).astype(int)[:,:,np.newaxis]
newy.append(imgy)
y_img = newy
X += X_img
y += y_img
print 'lenX', len(X)
print 'leny', len(y)
X = np.asarray(X)
X = np.rollaxis(X, 3, 1)
y = np.asarray(y)
y = np.rollaxis(y, 3, 1)
return X, y
def setenv():
NNdir = os.path.dirname(os.path.realpath(__file__))
# directory to save all the dataset
os.environ['MOZI_DATA_PATH'] = NNdir + '/data'
if not os.path.exists(os.environ['MOZI_DATA_PATH']):
os.mkdir(os.environ['MOZI_DATA_PATH'])
# directory for saving the database that is used for logging the results
os.environ['MOZI_DATABASE_PATH'] = NNdir + '/database'
if not os.path.exists(os.environ['MOZI_DATABASE_PATH']):
os.mkdir(os.environ['MOZI_DATABASE_PATH'])
# directory to save all the trained models and outputs
os.environ['MOZI_SAVE_PATH'] = NNdir + '/save'
if not os.path.exists(os.environ['MOZI_SAVE_PATH']):
os.mkdir(os.environ['MOZI_SAVE_PATH'])
print('MOZI_DATA_PATH = ' + os.environ['MOZI_DATA_PATH'])
print('MOZI_SAVE_PATH = ' + os.environ['MOZI_SAVE_PATH'])
print('MOZI_DATABASE_PATH = ' + os.environ['MOZI_DATABASE_PATH'])
class Tanh5(Template):
def _train_fprop(self, state_below):
return 5 * T.tanh(state_below)
def train(args):
# build dataset
xpath = os.environ['MOZI_DATA_PATH'] + '/X_{}_augment_{}.npy'.format('_'.join([str(d) for d in _IMG_INPUT_DIM_]), str(img_augment))
ypath = os.environ['MOZI_DATA_PATH'] + '/y_{}_augment_{}.npy'.format('_'.join([str(d) for d in _IMG_INPUT_DIM_]), str(img_augment))
if not os.path.exists(xpath) or not os.path.exists(ypath):
X, y = make_Xy(args, img_augment)
with open(xpath, 'wb') as fout:
np.save(fout, X)
print '..saved to', xpath
with open(ypath, 'wb') as fout:
np.save(fout, y)
print '..saved to', ypath
else:
with open(xpath) as xin, open(ypath) as yin:
X = np.load(xin)
y = np.load(yin)
print '..data loaded'
if img_preprocess:
X = img_preprocess.apply(X)
# import pdb; pdb.set_trace()
idxs = np.arange(len(X))
np.random.shuffle(idxs)
data = MultiInputsData(X=X[idxs][:10000], y=y[idxs][:10000], train_valid_test_ratio=train_valid_test_ratio, batch_size=batch_size)
if load_model:
print '..loading model', load_model
model_path = os.environ['MOZI_SAVE_PATH'] + '/' + load_model + '/model.pkl'
with open(model_path) as fin:
model = cPickle.load(fin)
else:
# c, h, w = _IMG_INPUT_DIM_
# build the master model
model = Sequential(input_var=T.tensor4(), output_var=T.tensor4(), verbose=verbose)
ks = 11
model.add(Convolution2D(input_channels=3, filters=16, kernel_size=(ks,ks), stride=(1,1), border_mode='full'))
model.add(Crop(border=(ks/2,ks/2)))
model.add(BatchNormalization(dim=16, layer_type='conv', short_memory=short_memory))
model.add(RELU())
model.add(Pooling2D(poolsize=(3, 3), stride=(1,1), padding=(1,1), mode='max'))
# model.add(RELU())
# h, w = full(h, w, 5, 1)
ks = 9
model.add(Convolution2D(input_channels=16, filters=32, kernel_size=(ks,ks), stride=(1,1), border_mode='full'))
model.add(Crop(border=(ks/2,ks/2)))
model.add(BatchNormalization(dim=32, layer_type='conv', short_memory=short_memory))
model.add(RELU())
model.add(Pooling2D(poolsize=(3, 3), stride=(1,1), padding=(1,1), mode='max'))
ks = 5
model.add(Convolution2D(input_channels=32, filters=1, kernel_size=(ks,ks), stride=(1,1), border_mode='full'))
# model.add(BatchNormalization(dim=1, layer_type='conv', short_memory=short_memory))
model.add(Crop(border=(ks/2,ks/2)))
model.add(Sigmoid())
# build learning method
# learning_method = SGD(learning_rate=lr, momentum=momentum,
# lr_decay_factor=lr_decay_factor, decay_batch=decay_batch)
learning_method = Adam(learning_rate=lr)
# learning_method = RMSprop(learning_rate=lr)
# Build Logger
log = Log(experiment_name = experiment_name,
description = desc,
save_outputs = True, # log all the outputs from the screen
save_model = save_model, # save the best model
save_epoch_error = True, # log error at every epoch
save_to_database = {'name': 'skin_segment.sqlite3',
'records': {'learning_rate': lr,
'valid_cost_func': valid_cost,
'train_cost_func': train_cost}}
) # end log
os.system('cp {} {}'.format(__file__, log.exp_dir))
dname = os.path.dirname(os.path.realpath(__file__))
# put everything into the train object
train_object = TrainObject(model = model,
log = log,
dataset = data,
train_cost = train_cost,
valid_cost = valid_cost,
learning_method = learning_method,
stop_criteria = {'max_epoch' : 100,
'epoch_look_back' : 5,
'percent_decrease' : 0.01}
)
# finally run the code
train_object.setup()
train_object.run()
def generate_mask(model):
with open(os.environ['MOZI_SAVE_PATH'] + '/' + model + '/model.pkl') as fin:
mod = cPickle.load(fin)
c, h, w = _IMG_INPUT_DIM_
imgpaths = glob.glob(PROJ_DIR + '/Skin/Image/*jpg')
imgpaths = np.random.choice(imgpaths, size=20, replace=False)
for i, imgpath in enumerate(imgpaths):
print '{}/{}'.format(i+1, len(imgpaths))
img = cv2.imread(imgpath)
img = cv2.resize(img, (w,h))
img = np.rollaxis(img, 2, 0)
mask = mod.fprop([img])
mask = (mask > 0.5).astype(int)
bname = os.path.basename(imgpath)
savepath = os.environ['MOZI_SAVE_PATH'] + '/' + model + '/' + bname
# import pdb; pdb.set_trace()
cv2.imwrite(savepath, np.rollaxis(mask[0], 0, 3) * 255.0)
if __name__ == '__main__':
setenv()
parser = argparse.ArgumentParser(description='GB.')
parser.add_argument("--input_dir", help="e.g. kaggle", default="data/skin")
parser.add_argument("--label_pattern", help="e.g. %_mask.tif", default="%_Segmentation.png")
parser.add_argument("--extension", help="e.g. tif", default="jpg")
parser.add_argument('-t', action='store_true', default=False)
parser.add_argument('-g', required=False, default='')
args = parser.parse_args()
if args.t:
train(args)
elif args.g:
print 'model imgpath as args '
generate_mask(model=args.g)
else:
print 'provide arg -t (train) or -g (generate) or -gt (generate_test)'