-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathmain.js
165 lines (136 loc) · 4.8 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import { AutoModel, AutoProcessor, RawImage } from "@huggingface/transformers";
// Reference the elements that we will need
const status = document.getElementById("status");
const container = document.getElementById("container");
const canvas = document.getElementById("canvas");
const outputCanvas = document.getElementById("output-canvas");
const video = document.getElementById("video");
const sizeSlider = document.getElementById("size");
const sizeLabel = document.getElementById("size-value");
const scaleSlider = document.getElementById("scale");
const scaleLabel = document.getElementById("scale-value");
function setStreamSize(width, height) {
video.width = outputCanvas.width = canvas.width = Math.round(width);
video.height = outputCanvas.height = canvas.height = Math.round(height);
}
status.textContent = "Loading model...";
function getDeviceConfig(deviceParam) {
const defaultDevice = 'webgpu';
const webnnDevices = ['webnn-gpu', 'webnn-cpu', 'webnn-npu'];
const device = (deviceParam || defaultDevice).toLowerCase();
const dtype = webnnDevices.includes(device) ? 'fp16' : 'fp32';
const FREE_DIMENSION_HEIGHT = 256;
const FREE_DIMENSION_WIDTH = 320;
const sessionOptions = webnnDevices.includes(device)
? {
freeDimensionOverrides: {
batch_size: 1,
height: FREE_DIMENSION_HEIGHT,
width: FREE_DIMENSION_WIDTH,
},
}
: {};
return { device, dtype, sessionOptions };
}
const urlParams = new URLSearchParams(window.location.search);
let { device, dtype, sessionOptions } = getDeviceConfig(urlParams.get('device'));
if (!['webgpu', 'webnn-gpu', 'webnn-cpu', 'webnn-npu'].includes(device)) {
status.textContent = `Unsupported device ${device}. Falling back to WebGPU.`;
device = 'webgpu';
}
// Load model and processor
const model_id = "Xenova/modnet";
let model;
try {
model = await AutoModel.from_pretrained(model_id, {
device: device,
dtype: dtype,
session_options: sessionOptions
});
} catch (err) {
status.textContent = err.message;
alert(err.message);
throw err;
}
const processor = await AutoProcessor.from_pretrained(model_id);
// Set up controls
let size = 256;
processor.feature_extractor.size = { shortest_edge: size };
sizeSlider.addEventListener("input", () => {
size = Number(sizeSlider.value);
processor.feature_extractor.size = { shortest_edge: size };
sizeLabel.textContent = size;
});
sizeSlider.disabled = false;
if (['webnn-gpu', 'webnn-cpu', 'webnn-npu'].includes(device)) {
sizeSlider.disabled = true;
}
let scale = 0.5;
scaleSlider.addEventListener("input", () => {
scale = Number(scaleSlider.value);
setStreamSize(video.videoWidth * scale, video.videoHeight * scale);
scaleLabel.textContent = scale;
});
scaleSlider.disabled = false;
status.textContent = "Ready";
let isProcessing = false;
let previousTime;
const context = canvas.getContext("2d", { willReadFrequently: true });
const outputContext = outputCanvas.getContext("2d", {
willReadFrequently: true,
});
function updateCanvas() {
const { width, height } = canvas;
if (!isProcessing) {
isProcessing = true;
(async function () {
// Read the current frame from the video
context.drawImage(video, 0, 0, width, height);
const currentFrame = context.getImageData(0, 0, width, height);
const image = new RawImage(currentFrame.data, width, height, 4);
// Pre-process image
const inputs = await processor(image);
// Predict alpha matte
const { output } = await model({ input: inputs.pixel_values });
const mask = await RawImage.fromTensor(
output[0].mul(255).to("uint8"),
).resize(width, height);
image.putAlpha(mask);
outputContext.putImageData(
new ImageData(image.data, image.width, image.height),
0,
0,
);
if (previousTime !== undefined) {
const fps = 1000 / (performance.now() - previousTime);
status.textContent = `FPS: ${fps.toFixed(2)}`;
}
previousTime = performance.now();
isProcessing = false;
})();
}
window.requestAnimationFrame(updateCanvas);
}
// Start the video stream
navigator.mediaDevices
.getUserMedia(
{ video: true }, // Ask for video
)
.then((stream) => {
// Set up the video and canvas elements.
video.srcObject = stream;
video.play();
const videoTrack = stream.getVideoTracks()[0];
const { width, height } = videoTrack.getSettings();
setStreamSize(width * scale, height * scale);
// Set container width and height depending on the image aspect ratio
const ar = width / height;
const [cw, ch] = ar > 720 / 405 ? [720, 720 / ar] : [405 * ar, 405];
container.style.width = `${cw}px`;
container.style.height = `${ch}px`;
// Start the animation loop
setTimeout(updateCanvas, 50);
})
.catch((error) => {
alert(error);
});