|
| 1 | +from functools import partial |
| 2 | +from time import time |
| 3 | + |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +import torch.distributed as dist |
| 7 | +import torch.multiprocessing as mp |
| 8 | +from torch.nn.parallel import DistributedDataParallel as DDP |
| 9 | +from torch.testing import assert_close |
| 10 | + |
| 11 | +import colossalai |
| 12 | +from colossalai.amp import convert_to_apex_amp |
| 13 | +from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration |
| 14 | +from colossalai.gemini.gemini_mgr import GeminiManager |
| 15 | +from colossalai.nn.optimizer import HybridAdam |
| 16 | +from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer |
| 17 | +from colossalai.nn.parallel import ZeroDDP |
| 18 | +from colossalai.testing import parameterize, rerun_if_address_is_in_use |
| 19 | +from colossalai.utils import free_port |
| 20 | +from colossalai.utils.cuda import get_current_device |
| 21 | +from colossalai.utils.model.colo_init_context import ColoInitContext |
| 22 | +from tests.components_to_test import run_fwd_bwd |
| 23 | +from tests.components_to_test.registry import non_distributed_component_funcs |
| 24 | +from tests.test_tensor.common_utils import debug_print, set_seed |
| 25 | + |
| 26 | + |
| 27 | +def check_param(model: ZeroDDP, torch_model: torch.nn.Module): |
| 28 | + zero_dict = model.state_dict(only_rank_0=False) |
| 29 | + torch_dict = torch_model.state_dict() |
| 30 | + |
| 31 | + for key, value in torch_dict.items(): |
| 32 | + # key is 'module.model.PARAMETER', so we truncate it |
| 33 | + key = key[7:] |
| 34 | + if key == 'model.lm_head.weight': |
| 35 | + continue |
| 36 | + assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) |
| 37 | + temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) |
| 38 | + # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) |
| 39 | + assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) |
| 40 | + |
| 41 | + |
| 42 | +@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) |
| 43 | +@parameterize('model_name', ['gpt2']) |
| 44 | +def exam_grad_clipping(placement_policy, model_name: str): |
| 45 | + set_seed(1912) |
| 46 | + get_components_func = non_distributed_component_funcs.get_callable(model_name) |
| 47 | + model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() |
| 48 | + |
| 49 | + torch_model = model_builder().cuda() |
| 50 | + amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32) |
| 51 | + torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) |
| 52 | + torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) |
| 53 | + torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) |
| 54 | + |
| 55 | + init_dev = get_current_device() |
| 56 | + with ColoInitContext(device=init_dev): |
| 57 | + model = model_builder() |
| 58 | + |
| 59 | + for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
| 60 | + p.data.copy_(torch_p.data) |
| 61 | + |
| 62 | + world_size = torch.distributed.get_world_size() |
| 63 | + config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) |
| 64 | + config_dict[world_size]['chunk_size'] = 5000 |
| 65 | + config_dict[world_size]['keep_gathered'] = False |
| 66 | + if placement_policy != 'cuda': |
| 67 | + init_device = torch.device('cpu') |
| 68 | + else: |
| 69 | + init_device = None |
| 70 | + chunk_manager = ChunkManager(config_dict, init_device=init_device) |
| 71 | + gemini_manager = GeminiManager(placement_policy, chunk_manager) |
| 72 | + model = ZeroDDP(model, gemini_manager, pin_memory=True) |
| 73 | + |
| 74 | + optimizer = HybridAdam(model.parameters(), lr=1e-3) |
| 75 | + zero_optim = ZeroOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0) |
| 76 | + |
| 77 | + model.train() |
| 78 | + torch_model.train() |
| 79 | + |
| 80 | + set_seed(dist.get_rank() * 3 + 128) |
| 81 | + for i, (data, label) in enumerate(train_dataloader): |
| 82 | + if i > 2: |
| 83 | + break |
| 84 | + data = data.cuda() |
| 85 | + label = label.cuda() |
| 86 | + |
| 87 | + zero_optim.zero_grad() |
| 88 | + torch_optim.zero_grad() |
| 89 | + |
| 90 | + torch_loss = run_fwd_bwd(torch_model, data, label, criterion, torch_optim) |
| 91 | + loss = run_fwd_bwd(model, data, label, criterion, zero_optim) |
| 92 | + assert_close(torch_loss, loss) |
| 93 | + |
| 94 | + import apex.amp as apex_amp |
| 95 | + torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0) |
| 96 | + torch_optim.step() |
| 97 | + zero_optim.step() |
| 98 | + |
| 99 | + check_param(model, torch_model) |
| 100 | + |
| 101 | + |
| 102 | +def run_dist(rank, world_size, port): |
| 103 | + config = {} |
| 104 | + colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
| 105 | + exam_grad_clipping() |
| 106 | + |
| 107 | + |
| 108 | +@pytest.mark.dist |
| 109 | +@pytest.mark.parametrize('world_size', [1, 2]) |
| 110 | +@rerun_if_address_is_in_use() |
| 111 | +def test_grad_clip(world_size): |
| 112 | + run_func = partial(run_dist, world_size=world_size, port=free_port()) |
| 113 | + mp.spawn(run_func, nprocs=world_size) |
| 114 | + |
| 115 | + |
| 116 | +if __name__ == '__main__': |
| 117 | + test_grad_clip(2) |
0 commit comments