-
Notifications
You must be signed in to change notification settings - Fork 4.5k
/
Copy pathgrpo.py
executable file
·386 lines (346 loc) · 17.3 KB
/
grpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
GRPO trainer
"""
import os
from typing import Dict, List, Optional, Union
import torch
import wandb
from coati.experience_buffer import NaiveExperienceBuffer
from coati.experience_maker import Experience, NaiveExperienceMaker
from coati.models import RewardModel, RLVRRewardModel
from coati.models.loss import GPTLMLoss, PolicyLoss
from coati.models.utils import calc_action_log_probs
from coati.trainer.callbacks import Callback
from coati.trainer.utils import all_reduce_mean
from coati.utils import AccumulativeMeanMeter, save_checkpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin
from colossalai.cluster import DistCoordinator
from colossalai.utils import get_current_device
from .base import OLTrainer
from .utils import AnnealingScheduler, CycledDataLoader, is_rank_0, to_device
def _set_default_generate_kwargs(actor: PreTrainedModel) -> Dict:
"""
Set default keyword arguments for generation based on the actor model.
Args:
actor (PreTrainedModel): The actor model.
Returns:
Dict: A dictionary containing the default keyword arguments for generation.
"""
unwrapped_model = actor.unwrap()
new_kwargs = {}
# use huggingface models method directly
if hasattr(unwrapped_model, "prepare_inputs_for_generation"):
new_kwargs["prepare_inputs_fn"] = unwrapped_model.prepare_inputs_for_generation
if hasattr(unwrapped_model, "_update_model_kwargs_for_generation"):
new_kwargs["update_model_kwargs_fn"] = unwrapped_model._update_model_kwargs_for_generation
return new_kwargs
class GRPOTrainer(OLTrainer):
"""
Trainer for GRPO algorithm.
Args:
strategy (Booster): the strategy to use for training
actor (Actor): the actor model in ppo algorithm
reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences
initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor
actor_optim (Optimizer): the optimizer to use for actor model
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
train_batch_size (int, defaults to 8): the batch size to use for training
buffer_limit (int, defaults to 0): the max_size limitation of buffer
buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
vf_coef (float, defaults to 1.0): the coefficient of value loss
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
value_clip (float, defaults to 0.4): the clip coefficient of value loss
sample_buffer (bool, defaults to False): whether to sample from buffer
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(
self,
actor_booster: Booster,
actor: PreTrainedModel,
reward_model: Union[RewardModel, RLVRRewardModel],
initial_model: PreTrainedModel,
actor_optim: Optimizer,
actor_lr_scheduler: _LRScheduler,
tokenizer: PreTrainedTokenizerBase,
kl_coef: float = 0.1,
ptx_coef: float = 0.9,
train_batch_size: int = 8,
buffer_limit: int = 0,
buffer_cpu_offload: bool = True,
eps_clip: float = 0.2,
vf_coef: float = 1.0,
value_clip: float = 0.2,
sample_buffer: bool = False,
dataloader_pin_memory: bool = True,
offload_inference_models: bool = True,
apply_loss_mask: bool = True,
accumulation_steps: int = 1,
save_interval: int = 0,
save_dir: str = None,
use_tp: bool = False,
num_generation: int = 8,
inference_batch_size: int = None,
logits_forward_batch_size: int = None,
temperature_annealing_config: Optional[Dict] = None,
coordinator: DistCoordinator = None,
callbacks: List[Callback] = [],
**generate_kwargs,
) -> None:
if isinstance(actor_booster, GeminiPlugin):
assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')"
data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
super().__init__(actor_booster, None, data_buffer, sample_buffer, dataloader_pin_memory, callbacks=callbacks)
self.generate_kwargs = _set_default_generate_kwargs(actor)
self.generate_kwargs.update(generate_kwargs)
self.actor = actor
self.actor_booster = actor_booster
self.actor_scheduler = actor_lr_scheduler
self.tokenizer = tokenizer
self.experience_maker = NaiveExperienceMaker(
self.actor,
None,
reward_model,
initial_model,
self.tokenizer,
kl_coef,
use_grpo=True,
num_generation=num_generation,
inference_batch_size=inference_batch_size,
logits_forward_batch_size=logits_forward_batch_size,
)
if temperature_annealing_config:
# use annealing
self.temperature_annealing_scheduler = AnnealingScheduler(
temperature_annealing_config["start_temperature"],
temperature_annealing_config["end_temperature"],
temperature_annealing_config["annealing_warmup_steps"],
temperature_annealing_config["annealing_steps"],
)
else:
self.temperature_annealing_scheduler = None
self.train_batch_size = train_batch_size
self.actor_loss_fn = PolicyLoss(eps_clip)
self.vf_coef = vf_coef
self.ptx_loss_fn = GPTLMLoss()
self.ptx_coef = ptx_coef
self.actor_optim = actor_optim
self.save_interval = save_interval
self.apply_loss_mask = apply_loss_mask
self.coordinator = coordinator
self.actor_save_dir = os.path.join(save_dir, "actor")
self.num_train_step = 0
self.accumulation_steps = accumulation_steps
self.use_tp = use_tp
self.accumulative_meter = AccumulativeMeanMeter()
self.offload_inference_models = offload_inference_models
self.device = get_current_device()
def _before_fit(
self,
prompt_dataloader: DataLoader,
pretrain_dataloader: Optional[DataLoader] = None,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
prompt_dataloader (DataLoader): the dataloader to use for prompt data
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
"""
self.prompt_dataloader = CycledDataLoader(prompt_dataloader)
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader) if pretrain_dataloader is not None else None
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
self.wandb_run = wandb.init(project="Coati-grpo", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "grpo")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)
def _setup_update_phrase_dataload(self):
"""
why not use distributed_dataloader?
if tp is used, input on each rank is the same and we use the same dataloader to feed same experience to all ranks
if tp is not used, input on each rank is different and we expect different experiences to be fed to each rank
"""
self.dataloader = DataLoader(
self.data_buffer,
batch_size=self.train_batch_size,
shuffle=True,
drop_last=True,
pin_memory=self.dataloader_pin_memory,
collate_fn=self.data_buffer.collate_fn,
)
def _make_experience(self, collect_step: int) -> Experience:
"""
Make experience
"""
prompts = self.prompt_dataloader.next()
if self.offload_inference_models:
# TODO(ver217): this may be controlled by strategy if they are prepared by strategy
self.experience_maker.initial_model.to(self.device)
self.experience_maker.reward_model.to(self.device)
if self.temperature_annealing_scheduler:
self.generate_kwargs["temperature"] = self.temperature_annealing_scheduler.get_temperature()
return self.experience_maker.make_experience(
input_ids=prompts["input_ids"].to(get_current_device()),
attention_mask=prompts["attention_mask"].to(get_current_device()),
gt_answer=prompts["gt_answer"],
**self.generate_kwargs,
)
def _training_step(self, experience: Experience):
"""
Args:
experience:
sequences: [batch_size, prompt_length + response_length] --- <PAD>...<PAD><PROMPT>...<PROMPT><RESPONSE>...<RESPONSE><PAD>...<PAD>
"""
self.actor.train()
num_actions = experience.action_log_probs.size(1)
# policy loss
actor_logits = self.actor(input_ids=experience.sequences, attention_mask=experience.attention_mask)[
"logits"
] # [batch size, prompt_length + response_length]
action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions)
actor_loss, to_skip, max_ratio = self.actor_loss_fn(
action_log_probs,
experience.action_log_probs,
experience.advantages.unsqueeze(dim=-1).repeat_interleave(action_log_probs.size(-1), dim=-1),
action_mask=experience.action_mask if self.apply_loss_mask else None,
)
# sequence that is not end properly are not counted in token cost
token_cost = torch.sum(
(experience.sequences[:, -num_actions:] != self.tokenizer.pad_token_id).to(torch.float), axis=-1
).to(actor_logits.device)
end_properly = experience.sequences[:, -1] == self.tokenizer.pad_token_id
mean_token_cost = torch.sum(token_cost * end_properly) / torch.sum(end_properly)
actor_loss = (1 - self.ptx_coef) * actor_loss
if not to_skip:
self.actor_booster.backward(loss=actor_loss, optimizer=self.actor_optim)
# ptx loss
if self.ptx_coef != 0:
batch = self.pretrain_dataloader.next()
batch = to_device(batch, self.device)
outputs = self.actor(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
ptx_loss = outputs.loss
ptx_loss = self.ptx_coef * ptx_loss
self.actor_booster.backward(loss=ptx_loss, optimizer=self.actor_optim)
# sync
actor_loss_mean = all_reduce_mean(tensor=actor_loss)
max_ratio_mean = all_reduce_mean(tensor=max_ratio)
reward_mean = all_reduce_mean(tensor=experience.reward.mean())
advantages_mean = all_reduce_mean(tensor=experience.advantages.mean())
kl_mean = all_reduce_mean(tensor=experience.kl.mean())
mean_token_cost = all_reduce_mean(tensor=mean_token_cost)
if self.ptx_coef != 0:
ptx_loss_mean = all_reduce_mean(tensor=ptx_loss)
self.accumulative_meter.add("actor_loss", actor_loss_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("max_ratio", max_ratio_mean.to(torch.float16).item())
self.accumulative_meter.add("reward", reward_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("advantages", advantages_mean.to(torch.float16).item())
self.accumulative_meter.add("skip_ratio", 1.0 if to_skip else 0.0)
self.accumulative_meter.add("mean_token_cost", mean_token_cost.to(torch.float16).item())
self.accumulative_meter.add("kl", kl_mean.to(torch.float16).item())
if self.ptx_coef != 0:
self.accumulative_meter.add("ptx_loss", ptx_loss_mean.to(torch.float16).mean().item())
if self.num_train_step % self.accumulation_steps == self.accumulation_steps - 1:
self.actor_optim.step()
self.actor_optim.zero_grad()
self.actor_scheduler.step()
if self.temperature_annealing_scheduler:
self.temperature_annealing_scheduler.step_forward()
# preparing logging model output and corresponding rewards.
if self.num_train_step % 10 == 0:
response_text = self.experience_maker.tokenizer.batch_decode(
experience.sequences, skip_special_tokens=True
)
for i in range(len(response_text)):
response_text[i] = response_text[i] + f"\n\nReward: {experience.reward[i]}"
if self.writer and is_rank_0() and "wandb_run" in self.__dict__:
# log output to wandb
my_table = wandb.Table(
columns=[f"sample response {i}" for i in range(len(response_text))], data=[response_text]
)
try:
self.wandb_run.log({"sample_response": my_table})
except OSError as e:
self.coordinator.print_on_master(e)
elif self.writer and is_rank_0():
for line in response_text:
self.coordinator.print_on_master(line)
if self.writer and is_rank_0():
global_step = (self.num_train_step + 1) / self.accumulation_steps
self.writer.add_scalar("train/max_ratio", self.accumulative_meter.get("max_ratio"), global_step)
self.writer.add_scalar("train/skip_ratio", self.accumulative_meter.get("skip_ratio"), global_step)
self.writer.add_scalar("train/actor_loss", self.accumulative_meter.get("actor_loss"), global_step)
self.writer.add_scalar("train/lr_actor", self.actor_optim.param_groups[0]["lr"], global_step)
if self.ptx_coef != 0:
self.writer.add_scalar("train/ptx_loss", self.accumulative_meter.get("ptx_loss"), global_step)
self.writer.add_scalar("reward", self.accumulative_meter.get("reward"), global_step)
self.writer.add_scalar("token_cost", self.accumulative_meter.get("mean_token_cost"), global_step)
self.writer.add_scalar("approx_kl", self.accumulative_meter.get("kl"), global_step)
self.writer.add_scalar("advantages", self.accumulative_meter.get("advantages"), global_step)
self.accumulative_meter.reset()
self.num_train_step += 1
def _learn(self, update_step: int):
"""
Perform the learning step of the PPO algorithm.
Args:
update_step (int): The current update step.
Returns:
None
"""
if self.offload_inference_models:
self.experience_maker.initial_model.to("cpu")
self.experience_maker.reward_model.to("cpu")
# buffer may be empty at first, we should rebuild at each training
if self.sample_buffer:
experience = self.data_buffer.sample()
self._on_learn_batch_start()
experience.to_device(self.device)
self._training_step(experience)
self._on_learn_batch_end(experience)
else:
if isinstance(self.dataloader.sampler, DistributedSampler):
self.dataloader.sampler.set_epoch(update_step)
pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0())
for experience in pbar:
self._on_learn_batch_start()
experience.to_device(self.device)
self._training_step(experience)
self._on_learn_batch_end(experience)
def _save_checkpoint(self, num_train_step: int = 0):
"""
Save the actor checkpoints with running states.
Args:
num_train_step (int): The current num_train_step number.
Returns:
None
"""
self.coordinator.print_on_master("\nStart saving actor checkpoint with running states")
save_checkpoint(
save_dir=self.actor_save_dir,
booster=self.actor_booster,
model=self.actor,
optimizer=self.actor_optim,
lr_scheduler=self.actor_scheduler,
epoch=0,
step=num_train_step + 1,
batch_size=self.train_batch_size,
coordinator=self.coordinator,
)
self.coordinator.print_on_master(
f"Saved actor checkpoint at episode {(num_train_step + 1)} at folder {self.actor_save_dir}"
)