-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
129 lines (114 loc) · 4.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys, os
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
MODEL_NAME_MAPPER = {
'wav2vec2-base': "facebook/wav2vec2-base", # pre-trained
'wav2vec2-base-960h': "facebook/wav2vec2-base-960h", # fine-tuned
'hubert-base-ls960': "facebook/hubert-base-ls960", # pre-trained
'wav2vec2-large': "facebook/wav2vec2-large", # pre-trained
'wav2vec2-large-960h': "facebook/wav2vec2-large-960h", # fine-tuned
'hubert-large-ll60k': "facebook/hubert-large-ll60k", # pre-trained
'hubert-large-ls960-ft': "facebook/hubert-large-ls960-ft", # fine-tuned
}
PROCESSOR_MAPPER = { # use tokenizers of finetuned models
'wav2vec2-base': "facebook/wav2vec2-base-960h",
'wav2vec2-base-960h': "facebook/wav2vec2-base-960h",
'hubert-base-ls960': "facebook/hubert-large-ls960-ft",
'wav2vec2-large': "facebook/wav2vec2-large-960h",
'wav2vec2-large-960h': "facebook/wav2vec2-large-960h",
'hubert-large-ll60k': "facebook/hubert-large-ls960-ft",
'hubert-large-ls960-ft': "facebook/hubert-large-ls960-ft",
}
EMOTION_LABEL_MAPPER = {
'0': 'ang',
'1': 'hap',
'2': 'neu',
'3': 'sad',
}
GENDER_LABEL_MAPPER = {
'0': 'female',
'1': 'male',
}
METRIC_MAPPER = {
'ctc': 'wer',
'emotion': 'accuracy',
'1': 'wer',
'2': 'accuracy',
'duration': 'accuracy',
'mean_intensity': 'accuracy',
'mean_pitch': 'accuracy',
'std_pitch': 'accuracy',
'local_jitter': 'accuracy',
'local_shimmer': 'accuracy',
'gender': 'accuracy',
'speaker_id': 'accuracy',
}
NUM_CLASSES_MAPPER = {
'ctc': 32,
'emotion': 4,
'1': 32,
'2': 4,
'duration': 4,
'mean_intensity': 4,
'mean_pitch': 4,
'std_pitch': 4,
'local_jitter': 4,
'local_shimmer': 4,
'gender': 2,
'speaker_id': 24,
}
def normalize(train_data, test_data, key):
# fit for train
normalizer = MinMaxScaler().fit(np.array(train_data[key]).reshape(-1, 1))
# transform train
normalized_values = normalizer.transform(np.array(train_data[key]).reshape(-1, 1)).flatten().tolist()
train_data = train_data.remove_columns(key)
train_data = train_data.add_column(key, normalized_values)
# transform test
normalized_values = normalizer.transform(np.array(test_data[key]).reshape(-1, 1)).flatten().tolist()
test_data = test_data.remove_columns(key)
test_data = test_data.add_column(key, normalized_values)
return train_data, test_data
def discretize(train_data, test_data, key):
# train data
discretized_train_values, bin_edges = pd.qcut(pd.Series(train_data[key]), 4, labels=[0, 1, 2, 3], retbins=True)
discretized_train_values = discretized_train_values.to_numpy().astype(int)
train_data = train_data.remove_columns(key)
train_data = train_data.add_column(key, discretized_train_values)
# discretize the test data according to bins in train data
discretized_test_values = pd.cut(pd.Series(test_data[key]), bins=bin_edges, labels=[0, 1, 2, 3], include_lowest=True)
discretized_test_values = discretized_test_values.to_numpy().astype(int)
test_data = test_data.remove_columns(key)
test_data = test_data.add_column(key, discretized_test_values)
return train_data, test_data
def get_frame_boundaries(start, end, total_frames, total_audio_time):
start = total_frames * start / total_audio_time
end = total_frames * end / total_audio_time
start = np.ceil(start).astype('int')
end = np.ceil(end).astype('int')
return start, end
def add_mfa(dataset, alignment_path, split):
alignments = []
alignment_path = f"{alignment_path}{split}/outputs/"
file_ids = [int(f.split('.')[0]) for f in os.listdir(alignment_path) if f.endswith('.TextGrid')]
file_ids = np.sort(file_ids)
for ex in range(dataset.num_rows):
if ex not in file_ids:
alignments.append(None)
continue
lines = open(f"{alignment_path}{ex}.TextGrid", "r").readlines()
num_intervals = int(lines[13].strip().split('=')[-1])
mfa_intervals = []
for it in range(num_intervals):
xmin = float(lines[15+it*4].split("=")[-1].strip())
xmax = float(lines[16+it*4].split("=")[-1].strip())
text = lines[17+it*4].split("=")[-1].strip()[1:-1]
if text != "":
mfa_intervals.append({'start': xmin, 'end': xmax, 'word': text})
alignments.append(mfa_intervals)
# add mfa info to the dataset
dataset = dataset.add_column("mfa_intervals", alignments)
# filter examples with unsuccessfull mfa
dataset = dataset.select(file_ids)
return dataset