|
| 1 | +import argparse |
| 2 | +parser = argparse.ArgumentParser() |
| 3 | +parser.add_argument("--MODEL_NAME") |
| 4 | +parser.add_argument("--FIXED", action="store_true") |
| 5 | +parser.add_argument("--TASK") |
| 6 | +parser.add_argument("--MAX_LENGTH", type=int) |
| 7 | +parser.add_argument("--BATCH_SIZE", type=int) |
| 8 | +parser.add_argument("--EPOCHS", type=int) |
| 9 | +parser.add_argument("--GPU", default=0, type=int) |
| 10 | +args = parser.parse_args() |
| 11 | + |
| 12 | +MODEL_NAME = args.MODEL_NAME |
| 13 | +FIXED = args.FIXED |
| 14 | +TASK = args.TASK |
| 15 | +NUM_TRAIN_EPOCHS = args.EPOCHS |
| 16 | +MAX_LENGTH = args.MAX_LENGTH |
| 17 | +PER_DEVICE_BATCH_SIZE = args.BATCH_SIZE |
| 18 | +SELECTED_GPU = args.GPU |
| 19 | + |
| 20 | +# SELECTED_GPU = 0 |
| 21 | +# MODEL_NAME = 'bert' |
| 22 | +# FIXED = False |
| 23 | +# TASK = "NA" |
| 24 | +# MAX_LENGTH = 32 |
| 25 | +# NUM_TRAIN_EPOCHS = 5 |
| 26 | +# PER_DEVICE_BATCH_SIZE = 64 |
| 27 | + |
| 28 | +INPUT_MASKING = True |
| 29 | +MLM = True |
| 30 | +LEARNING_RATE = 3e-5 |
| 31 | +LR_SCHEDULER_TYPE = "linear" |
| 32 | +WARMUP_RATIO = 0.1 |
| 33 | +SEED = 42 |
| 34 | +SAVED_MODEL_PATH = f"/home/hmohebbi/Projects/ValueZeroing/directory/models/{MODEL_NAME}/{TASK}/" |
| 35 | + |
| 36 | +# Import Packages |
| 37 | +import sys, os |
| 38 | +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(sys.modules[__name__].__file__), ".."))) |
| 39 | +import numpy as np |
| 40 | +import matplotlib.pyplot as plt |
| 41 | +from tqdm.auto import tqdm |
| 42 | + |
| 43 | +import torch |
| 44 | +from torch.utils.data import DataLoader |
| 45 | +from torch.nn import CrossEntropyLoss |
| 46 | + |
| 47 | +from utils.utils import PREPROCESS_FUNC, MODEL_PATH, NUM_LABELS, BLIMP_TASKS |
| 48 | + |
| 49 | +from datasets import ( |
| 50 | + load_dataset, |
| 51 | + load_from_disk, |
| 52 | + load_metric, |
| 53 | +) |
| 54 | +from modeling.customized_modeling_bert import BertForMaskedLM |
| 55 | +# from modeling.customized_modeling_roberta import RobertaForMaskedLM |
| 56 | +# from modeling.customized_modeling_electra import ElectraForMaskedLM |
| 57 | +from transformers import ( |
| 58 | + AutoConfig, |
| 59 | + AutoTokenizer, |
| 60 | + AdamW, |
| 61 | + get_scheduler, |
| 62 | + default_data_collator, |
| 63 | + set_seed, |
| 64 | +) |
| 65 | +set_seed(SEED) |
| 66 | + |
| 67 | +if not os.path.exists(SAVED_MODEL_PATH): |
| 68 | + os.makedirs(SAVED_MODEL_PATH) |
| 69 | + |
| 70 | +# GPU |
| 71 | +if torch.cuda.is_available(): |
| 72 | + device = torch.device(f"cuda:{SELECTED_GPU}") |
| 73 | + print('We will use the GPU:', torch.cuda.get_device_name(SELECTED_GPU)) |
| 74 | +else: |
| 75 | + device = torch.device("cpu") |
| 76 | + print('No GPU available, using the CPU instead.') |
| 77 | + # exit() |
| 78 | + |
| 79 | +# Load Dataset |
| 80 | +if TASK in BLIMP_TASKS: |
| 81 | + data_path = f"/home/hmohebbi/Projects/ValueZeroing/data/processed_blimp/{MODEL_NAME}/{TASK}" |
| 82 | + data = load_from_disk(data_path) |
| 83 | + train_data = data['train'] |
| 84 | + eval_data = data['test'] |
| 85 | +else: |
| 86 | + print("Not implemented yet!") |
| 87 | + exit() |
| 88 | +train_data = train_data.shuffle(SEED) |
| 89 | +num_labels = NUM_LABELS[TASK] |
| 90 | + |
| 91 | +# Download Tokenizer & Model |
| 92 | +config = AutoConfig.from_pretrained(MODEL_PATH[MODEL_NAME], num_labels=num_labels) |
| 93 | +tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH[MODEL_NAME]) |
| 94 | + |
| 95 | +if MODEL_NAME == "bert": |
| 96 | + model = BertForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config) |
| 97 | +# elif MODEL_NAME == "roberta": |
| 98 | +# model = RobertaForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config) |
| 99 | +# elif MODEL_NAME == "electra": |
| 100 | +# model = ElectraForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config) |
| 101 | +else: |
| 102 | + print("model doesn't exist") |
| 103 | + exit() |
| 104 | + |
| 105 | +model.to(device) |
| 106 | + |
| 107 | +# Preprocessing |
| 108 | +train_dataset = PREPROCESS_FUNC[TASK](train_data, tokenizer, MAX_LENGTH, input_masking=INPUT_MASKING, mlm=MLM) |
| 109 | +eval_dataset = PREPROCESS_FUNC[TASK](eval_data, tokenizer, MAX_LENGTH, input_masking=INPUT_MASKING, mlm=MLM) |
| 110 | + |
| 111 | +train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn= default_data_collator, batch_size=PER_DEVICE_BATCH_SIZE) |
| 112 | +eval_dataloader = DataLoader(eval_dataset, collate_fn= default_data_collator, batch_size=PER_DEVICE_BATCH_SIZE) |
| 113 | + |
| 114 | +num_update_steps_per_epoch = len(train_dataloader) |
| 115 | +max_train_steps = NUM_TRAIN_EPOCHS * num_update_steps_per_epoch |
| 116 | + |
| 117 | +# Optimizer |
| 118 | +optimizer = AdamW(model.parameters(), lr=LEARNING_RATE) |
| 119 | +lr_scheduler = get_scheduler( |
| 120 | + name=LR_SCHEDULER_TYPE, |
| 121 | + optimizer=optimizer, |
| 122 | + num_warmup_steps=WARMUP_RATIO * max_train_steps, |
| 123 | + num_training_steps=max_train_steps, |
| 124 | + ) |
| 125 | + |
| 126 | +# metric & Loss |
| 127 | +metric = load_metric("accuracy") |
| 128 | +loss_fct = CrossEntropyLoss() |
| 129 | + |
| 130 | +tag = "forseqclassification_" |
| 131 | +tag += "pretrained" if FIXED else "finetuned" |
| 132 | +if MLM: |
| 133 | + tag += "_MLM" |
| 134 | + |
| 135 | +# Train |
| 136 | +progress_bar = tqdm(range(max_train_steps)) |
| 137 | +completed_steps = 0 |
| 138 | +for epoch in range(NUM_TRAIN_EPOCHS): |
| 139 | + # Train |
| 140 | + model.train() |
| 141 | + for batch in train_dataloader: |
| 142 | + good_token_id = batch.pop('good_token_id').to(device) |
| 143 | + bad_token_id = batch.pop('bad_token_id').to(device) |
| 144 | + batch = {k: v.to(device) for k, v in batch.items()} |
| 145 | + outputs = model(**batch) |
| 146 | + logits = outputs.logits |
| 147 | + |
| 148 | + good_logits = logits[torch.arange(logits.size(0)), good_token_id] |
| 149 | + bad_logits = logits[torch.arange(logits.size(0)), bad_token_id] |
| 150 | + logits_of_interest = torch.stack([good_logits, bad_logits], dim=1) |
| 151 | + labels = torch.zeros(logits_of_interest.shape[0], dtype=torch.int64, device=device) |
| 152 | + loss = loss_fct(logits_of_interest, labels) |
| 153 | + |
| 154 | + loss.backward() |
| 155 | + optimizer.step() |
| 156 | + lr_scheduler.step() |
| 157 | + optimizer.zero_grad() |
| 158 | + progress_bar.update(1) |
| 159 | + completed_steps += 1 |
| 160 | + |
| 161 | + |
| 162 | + model.eval() |
| 163 | + for batch in eval_dataloader: |
| 164 | + if MLM: |
| 165 | + good_token_id = batch.pop('good_token_id').to(device) |
| 166 | + bad_token_id = batch.pop('bad_token_id').to(device) |
| 167 | + batch = {k: v.to(device) for k, v in batch.items()} |
| 168 | + with torch.no_grad(): |
| 169 | + outputs = model(**batch) |
| 170 | + logits = outputs.logits |
| 171 | + |
| 172 | + if MLM: |
| 173 | + good_logits = logits[torch.arange(logits.size(0)), good_token_id] |
| 174 | + bad_logits = logits[torch.arange(logits.size(0)), bad_token_id] |
| 175 | + logits_of_interest = torch.stack([good_logits, bad_logits], dim=1) |
| 176 | + labels = torch.zeros(logits_of_interest.shape[0], dtype=torch.int64, device=device) |
| 177 | + predictions = torch.argmax(logits_of_interest, dim=-1) |
| 178 | + metric.add_batch(predictions=predictions, references=labels) |
| 179 | + else: |
| 180 | + predictions = torch.argmax(logits, dim=-1) |
| 181 | + metric.add_batch(predictions=predictions, references=batch['labels']) |
| 182 | + |
| 183 | + eval_metric = metric.compute() |
| 184 | + print(f"epoch {epoch}: {eval_metric}") |
| 185 | + |
| 186 | + |
| 187 | +# Save |
| 188 | +torch.save(model.state_dict(), f'{SAVED_MODEL_PATH}full_{tag}.pt') |
0 commit comments