-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_finetuning.py
188 lines (160 loc) · 6.07 KB
/
run_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--MODEL_NAME")
parser.add_argument("--FIXED", action="store_true")
parser.add_argument("--TASK")
parser.add_argument("--MAX_LENGTH", type=int)
parser.add_argument("--BATCH_SIZE", type=int)
parser.add_argument("--EPOCHS", type=int)
parser.add_argument("--GPU", default=0, type=int)
args = parser.parse_args()
MODEL_NAME = args.MODEL_NAME
FIXED = args.FIXED
TASK = args.TASK
NUM_TRAIN_EPOCHS = args.EPOCHS
MAX_LENGTH = args.MAX_LENGTH
PER_DEVICE_BATCH_SIZE = args.BATCH_SIZE
SELECTED_GPU = args.GPU
# SELECTED_GPU = 0
# MODEL_NAME = 'bert'
# FIXED = False
# TASK = "NA"
# MAX_LENGTH = 32
# NUM_TRAIN_EPOCHS = 5
# PER_DEVICE_BATCH_SIZE = 64
INPUT_MASKING = True
MLM = True
LEARNING_RATE = 3e-5
LR_SCHEDULER_TYPE = "linear"
WARMUP_RATIO = 0.1
SEED = 42
SAVED_MODEL_PATH = f"/home/hmohebbi/Projects/ValueZeroing/directory/models/{MODEL_NAME}/{TASK}/"
# Import Packages
import sys, os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(sys.modules[__name__].__file__), "..")))
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import torch
from torch.utils.data import DataLoader
from torch.nn import CrossEntropyLoss
from utils.utils import PREPROCESS_FUNC, MODEL_PATH, NUM_LABELS, BLIMP_TASKS
from datasets import (
load_dataset,
load_from_disk,
load_metric,
)
from modeling.customized_modeling_bert import BertForMaskedLM
# from modeling.customized_modeling_roberta import RobertaForMaskedLM
# from modeling.customized_modeling_electra import ElectraForMaskedLM
from transformers import (
AutoConfig,
AutoTokenizer,
AdamW,
get_scheduler,
default_data_collator,
set_seed,
)
set_seed(SEED)
if not os.path.exists(SAVED_MODEL_PATH):
os.makedirs(SAVED_MODEL_PATH)
# GPU
if torch.cuda.is_available():
device = torch.device(f"cuda:{SELECTED_GPU}")
print('We will use the GPU:', torch.cuda.get_device_name(SELECTED_GPU))
else:
device = torch.device("cpu")
print('No GPU available, using the CPU instead.')
# exit()
# Load Dataset
if TASK in BLIMP_TASKS:
data_path = f"/home/hmohebbi/Projects/ValueZeroing/data/processed_blimp/{MODEL_NAME}/{TASK}"
data = load_from_disk(data_path)
train_data = data['train']
eval_data = data['test']
else:
print("Not implemented yet!")
exit()
train_data = train_data.shuffle(SEED)
num_labels = NUM_LABELS[TASK]
# Download Tokenizer & Model
config = AutoConfig.from_pretrained(MODEL_PATH[MODEL_NAME], num_labels=num_labels)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH[MODEL_NAME])
if MODEL_NAME == "bert":
model = BertForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config)
# elif MODEL_NAME == "roberta":
# model = RobertaForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config)
# elif MODEL_NAME == "electra":
# model = ElectraForMaskedLM.from_pretrained(MODEL_PATH[MODEL_NAME], config=config)
else:
print("model doesn't exist")
exit()
model.to(device)
# Preprocessing
train_dataset = PREPROCESS_FUNC[TASK](train_data, tokenizer, MAX_LENGTH, input_masking=INPUT_MASKING, mlm=MLM)
eval_dataset = PREPROCESS_FUNC[TASK](eval_data, tokenizer, MAX_LENGTH, input_masking=INPUT_MASKING, mlm=MLM)
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn= default_data_collator, batch_size=PER_DEVICE_BATCH_SIZE)
eval_dataloader = DataLoader(eval_dataset, collate_fn= default_data_collator, batch_size=PER_DEVICE_BATCH_SIZE)
num_update_steps_per_epoch = len(train_dataloader)
max_train_steps = NUM_TRAIN_EPOCHS * num_update_steps_per_epoch
# Optimizer
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
lr_scheduler = get_scheduler(
name=LR_SCHEDULER_TYPE,
optimizer=optimizer,
num_warmup_steps=WARMUP_RATIO * max_train_steps,
num_training_steps=max_train_steps,
)
# metric & Loss
metric = load_metric("accuracy")
loss_fct = CrossEntropyLoss()
tag = "forseqclassification_"
tag += "pretrained" if FIXED else "finetuned"
if MLM:
tag += "_MLM"
# Train
progress_bar = tqdm(range(max_train_steps))
completed_steps = 0
for epoch in range(NUM_TRAIN_EPOCHS):
# Train
model.train()
for batch in train_dataloader:
good_token_id = batch.pop('good_token_id').to(device)
bad_token_id = batch.pop('bad_token_id').to(device)
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
logits = outputs.logits
good_logits = logits[torch.arange(logits.size(0)), good_token_id]
bad_logits = logits[torch.arange(logits.size(0)), bad_token_id]
logits_of_interest = torch.stack([good_logits, bad_logits], dim=1)
labels = torch.zeros(logits_of_interest.shape[0], dtype=torch.int64, device=device)
loss = loss_fct(logits_of_interest, labels)
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
model.eval()
for batch in eval_dataloader:
if MLM:
good_token_id = batch.pop('good_token_id').to(device)
bad_token_id = batch.pop('bad_token_id').to(device)
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
if MLM:
good_logits = logits[torch.arange(logits.size(0)), good_token_id]
bad_logits = logits[torch.arange(logits.size(0)), bad_token_id]
logits_of_interest = torch.stack([good_logits, bad_logits], dim=1)
labels = torch.zeros(logits_of_interest.shape[0], dtype=torch.int64, device=device)
predictions = torch.argmax(logits_of_interest, dim=-1)
metric.add_batch(predictions=predictions, references=labels)
else:
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch['labels'])
eval_metric = metric.compute()
print(f"epoch {epoch}: {eval_metric}")
# Save
torch.save(model.state_dict(), f'{SAVED_MODEL_PATH}full_{tag}.pt')