|
| 1 | +from torch.utils.data._utils.collate import default_collate |
| 2 | +from .sampler import BatchSampler, SequentialSampler, RandomSampler |
| 3 | +from .dataloaderiter import _SingleProcessDataLoaderIter, _MultiProcessingDataLoaderIter |
| 4 | + |
| 5 | + |
| 6 | +class DataLoader(object): |
| 7 | + def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, |
| 8 | + batch_sampler=None, collate_fn=None, drop_last=False, |
| 9 | + num_workers=0, timeout=0, worker_init_fn=None, prefetch_factor=2, persistent_workers=False): |
| 10 | + self.dataset = dataset |
| 11 | + |
| 12 | + # 因为这两个功能是冲突的,假设shuffle=True,但是sampler里面是SequentialSampler,那么就违背设计思想了 |
| 13 | + if sampler is not None and shuffle: |
| 14 | + raise ValueError('sampler option is mutually exclusive with ' |
| 15 | + 'shuffle') |
| 16 | + |
| 17 | + if batch_sampler is not None: |
| 18 | + # 一旦设置了batch_sampler,那么batch_size、shuffle、sampler和drop_last四个参数就不能传入 |
| 19 | + # 因为这4个参数功能和batch_sampler功能冲突了 |
| 20 | + if batch_size != 1 or shuffle or sampler is not None or drop_last: |
| 21 | + raise ValueError('batch_sampler option is mutually exclusive ' |
| 22 | + 'with batch_size, shuffle, sampler, and ' |
| 23 | + 'drop_last') |
| 24 | + batch_size = None |
| 25 | + drop_last = False |
| 26 | + |
| 27 | + if sampler is None: |
| 28 | + if shuffle: |
| 29 | + sampler = RandomSampler(dataset) |
| 30 | + else: |
| 31 | + sampler = SequentialSampler(dataset) |
| 32 | + |
| 33 | + # 也就是说batch_sampler必须要存在,你如果没有设置,那么采用默认类 |
| 34 | + if batch_sampler is None: |
| 35 | + batch_sampler = BatchSampler(sampler, batch_size, drop_last) |
| 36 | + |
| 37 | + self.batch_size = batch_size |
| 38 | + self.drop_last = drop_last |
| 39 | + self.sampler = sampler |
| 40 | + self.batch_sampler = iter(batch_sampler) |
| 41 | + |
| 42 | + if collate_fn is None: |
| 43 | + collate_fn = default_collate |
| 44 | + self.collate_fn = collate_fn |
| 45 | + |
| 46 | + self.num_workers = num_workers |
| 47 | + self.prefetch_factor = prefetch_factor |
| 48 | + self.timeout = timeout |
| 49 | + self.worker_init_fn = worker_init_fn |
| 50 | + |
| 51 | + # 换一种迭代器写法 |
| 52 | + def _get_iterator(self): |
| 53 | + if self.num_workers == 0: |
| 54 | + return _SingleProcessDataLoaderIter(self) |
| 55 | + else: |
| 56 | + return _MultiProcessingDataLoaderIter(self) |
| 57 | + |
| 58 | + # 返回迭代器对象 |
| 59 | + def __iter__(self): |
| 60 | + return self._get_iterator() |
| 61 | + |
0 commit comments