-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
306 lines (236 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
from itertools import cycle
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from keras import backend as K
from keras.layers import Conv1D, BatchNormalization, GlobalAveragePooling1D, Permute, Dropout
from keras.layers import Input, Dense, concatenate, Activation
from keras.models import Model
from keras.regularizers import l2
from scipy import interp
from sklearn.metrics import roc_curve, auc, classification_report
from keras.layers import GRU
from utils.constants import MAX_SEQUENCE_LENGTH_LIST, NB_CLASSES_LIST
from utils.generic_utils import load_dataset_at
from utils.keras_utils import evaluate_model, train_model
from utils.layer_utils import AttentionLSTM
m_layers = [
'attention_lstm_1',
'dropout_1',
'global_average_pooling1d_1',
'concatenate_1',
'dense_1'
]
def generate_grufcn(MAX_SEQUENCE_LENGTH, NB_CLASS, NUM_CELLS=8):
ip = Input(shape=(1, MAX_SEQUENCE_LENGTH))
x = GRU(NUM_CELLS)(ip)
# x = LSTM(NUM_CELLS)(ip)
x = Dropout(rate=0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# callbacks = [callback(model=model, X_train=x)]
# # add load model code here to fine-tune
return model
def generate_alstmfcn(MAX_SEQUENCE_LENGTH, NB_CLASS, NUM_CELLS=8):
ip = Input(shape=(1, MAX_SEQUENCE_LENGTH))
x = AttentionLSTM(NUM_CELLS)(ip)
x = Dropout(rate=0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='linear', kernel_regularizer=l2(1e-4))(x)
# out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# activations = get_activations(model, x, auto_compile=True)
return model
def specificity(y_true, y_pred):
"""
param:
y_pred - Predicted labels
y_true - True labels
Returns:
Specificity score
"""
neg_y_true = 1 - y_true
neg_y_pred = 1 - y_pred
fp = K.sum(neg_y_true * y_pred)
tn = K.sum(neg_y_true * neg_y_pred)
return tn / (tn + fp + K.epsilon())
def one_hot_encode(x, n_classes):
"""
One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
: x: List of sample Labels
: return: Numpy array of one-hot encoded labels
"""
return np.eye(n_classes)[x]
def roc_curve_draw(model, y_test, y_score):
y_test = np.asarray(list(map(int, y_test)))
n_classes = 16
one_hot_list = one_hot_encode(y_test, n_classes)
y_test = one_hot_list.astype(int)
lw = 2
# محاسبه ROC برای هر کلاس
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
fig = plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve',
color='deeppink', linewidth=2)
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve',
color='navy', linestyle=':', linewidth=2)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
# for i, color in zip(range(n_classes), colors):
# plt.plot(fpr[i], tpr[i], color=color, lw=lw,
# label='ROC curve of class {0} (area = {1:0.2f})'
# ''.format(i, roc_auc[i]))
ax = fig.gca()
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1., 0.1))
ax.grid(linewidth=0.6, linestyle='--')
plt.grid(True)
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve for Multi-Class (' + str.upper(MODEL_NAME).replace('FCN', '-FCN') + ')')
plt.legend(loc="lower right")
plt.savefig('results/ROC_' + MODEL_NAME + '.png', format='png')
# plt.show()
if __name__ == "__main__":
epoch = 1500
dataset_map = [('my_data', 0)]
print("Num datasets : ", len(dataset_map))
print()
base_log_name = '%s_%d_cells_new_datasets.csv'
base_weights_dir = '%s_%d_cells_weights/'
MODELS = [
('lstmfcn', generate_grufcn),
# ('alstmfcn', generate_alstmfcn),
]
# Number of cells
CELLS = [64]
# Normalization scheme
# Normalize = False means no normalization will be done
# Normalize = True / 1 means sample wise z-normalization
# Normalize = 2 means dataset normalization.
normalize_dataset = True
for MODEL_NAME, model_fn in MODELS:
for cell in CELLS:
successes = []
failures = []
if not os.path.exists(base_log_name % (MODEL_NAME, cell)):
with open(base_log_name % (MODEL_NAME, cell), 'w') as file:
file.write('%s,%s,%s,%s\n' % ('dataset_id', 'dataset_name', 'dataset_name_', 'test_accuracy'))
for dname, did in dataset_map:
MAX_SEQUENCE_LENGTH = MAX_SEQUENCE_LENGTH_LIST[did]
NB_CLASS = NB_CLASSES_LIST[did]
# release GPU Memory
K.clear_session()
with open(base_log_name % (MODEL_NAME, cell), 'a+') as file:
weights_dir = base_weights_dir % (MODEL_NAME, cell)
if not os.path.exists('weights/' + weights_dir):
os.makedirs('weights/' + weights_dir)
dataset_name_ = weights_dir + dname
# try:
model = model_fn(MAX_SEQUENCE_LENGTH, NB_CLASS, cell)
print('*' * 20, f"Training model for dataset {dname}", '*' * 20)
## comment out the training code to only evaluate !
train_model(model, did, dataset_name_, epochs=epoch, batch_size=128,
normalize_timeseries=normalize_dataset)
acc = evaluate_model(model, did, dataset_name_, batch_size=128,
normalize_timeseries=normalize_dataset)
s = "%d,%s,%s,%0.6f\n" % (did, dname, dataset_name_, acc)
_, _, X_test, y_test, is_timeseries = load_dataset_at(0,
normalize_timeseries=True)
# print(y_test)
# if MODEL_NAME == 'alstmfcn':
# dt = pd.DataFrame(data=np.asarray(list(map(int, y_test))))
# dt.to_csv("weights/matrix____class_" + dataset_name_.split('/')[0] + ".csv", mode='w',
# index=True)
# y_true = np.array(y_test)[:, 0].astype(int)
y_pred = model.predict(X_test, batch_size=128, verbose=1)
# Draw ROC curve
roc_curve_draw(MODEL_NAME, y_test, np.array(y_pred))
if MODEL_NAME == 'alstmfcn':
for layer_name in m_layers:
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(X_test)
# Save in csv file
dt = pd.DataFrame(data=intermediate_output)
# dt = pd.DataFrame(data=y_test)
dt.to_csv("weights/matrix____" + layer_name + dataset_name_.split('/')[0] + ".csv", mode='w',
index=True)
for item in m_layers:
a = pd.read_csv('weights/matrix____' + item + 'alstmfcn_64_cells_weights.csv')
print(a)
b = pd.read_csv('../weights/class.csv')
c = a.merge(b)
c.to_csv('weights/output_matrix____' + item + '.csv', index=False)
# Row Signal
a = pd.read_csv('../raw_signal.csv')
b = pd.read_csv('../weights/class.csv')
c = a.merge(b)
c.to_csv('weights/output_matrix____raw_signal.csv', index=False)
y_pred_bool = np.argmax(y_pred, axis=1)
_pr = classification_report(np.asarray(list(map(int, y_test))), y_pred_bool)
with open('results/precision_recall_' + MODEL_NAME + '.txt', mode='w') as f:
f.write(_pr)
file.write(s)
file.flush()
successes.append(s)
print('\n\n')
print('*' * 20, "Successes", '*' * 20)
print()
for line in successes:
print(line)
print('\n\n')
print('*' * 20, "Failures", '*' * 20)
print()
for line in failures:
print(line)