-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMNIST image trainer.py
33 lines (28 loc) · 1.34 KB
/
MNIST image trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.astype('float32')
X_train /= 255
X_train = X_train.reshape(60000, 28, 28,1)
X_test = X_test.reshape(10000, 28, 28,1)
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
model = Sequential()
model.add(Conv2D(32, kernel_size= 2, activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(2))
model.add(Conv2D(64, kernel_size= 2, activation='relu', kernel_initializer='he_uniform', padding='same'))
model.add(MaxPooling2D(2))
model.add(Conv2D(128, kernel_size= 2, activation='relu', kernel_initializer='he_uniform', padding='same'))
model.add(MaxPooling2D(2))
model.add(Flatten())
model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10, activation='softmax'))
opt = SGD(lr=0.01, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train,y_train,epochs=7,batch_size=32,validation_split=.2)
model.save('MNIST_Trained_model.h5')
test_results = model.evaluate(X_test,y_test,batch_size=32)