diff --git a/h2o-algos/src/main/java/hex/schemas/ModelSelectionV3.java b/h2o-algos/src/main/java/hex/schemas/ModelSelectionV3.java index ba005145232e..38184ce88bc3 100644 --- a/h2o-algos/src/main/java/hex/schemas/ModelSelectionV3.java +++ b/h2o-algos/src/main/java/hex/schemas/ModelSelectionV3.java @@ -64,7 +64,6 @@ public static final class ModelSelectionParametersV3 extends ModelParametersSche "max_after_balance_size", "max_confusion_matrix_size", "max_runtime_secs", - "custom_metric_func", "nparallelism", "max_predictor_number", // denote maximum number of predictors to build models for "min_predictor_number", diff --git a/h2o-py/h2o/estimators/model_selection.py b/h2o-py/h2o/estimators/model_selection.py index ae7a1d42e370..9b5c6909f78f 100644 --- a/h2o-py/h2o/estimators/model_selection.py +++ b/h2o-py/h2o/estimators/model_selection.py @@ -81,7 +81,6 @@ def __init__(self, max_after_balance_size=5.0, # type: float max_confusion_matrix_size=20, # type: int max_runtime_secs=0.0, # type: float - custom_metric_func=None, # type: Optional[str] nparallelism=0, # type: int max_predictor_number=1, # type: int min_predictor_number=1, # type: int @@ -290,9 +289,6 @@ def __init__(self, :param max_runtime_secs: Maximum allowed runtime in seconds for model training. Use 0 to disable. Defaults to ``0.0``. :type max_runtime_secs: float - :param custom_metric_func: Reference to custom evaluation function, format: `language:keyName=funcName` - Defaults to ``None``. - :type custom_metric_func: str, optional :param nparallelism: number of models to build in parallel. Defaults to 0.0 which is adaptive to the system capability Defaults to ``0``. @@ -383,7 +379,6 @@ def __init__(self, self.max_after_balance_size = max_after_balance_size self.max_confusion_matrix_size = max_confusion_matrix_size self.max_runtime_secs = max_runtime_secs - self.custom_metric_func = custom_metric_func self.nparallelism = nparallelism self.max_predictor_number = max_predictor_number self.min_predictor_number = min_predictor_number @@ -1124,20 +1119,6 @@ def max_runtime_secs(self, max_runtime_secs): assert_is_type(max_runtime_secs, None, numeric) self._parms["max_runtime_secs"] = max_runtime_secs - @property - def custom_metric_func(self): - """ - Reference to custom evaluation function, format: `language:keyName=funcName` - - Type: ``str``. - """ - return self._parms.get("custom_metric_func") - - @custom_metric_func.setter - def custom_metric_func(self, custom_metric_func): - assert_is_type(custom_metric_func, None, str) - self._parms["custom_metric_func"] = custom_metric_func - @property def nparallelism(self): """ diff --git a/h2o-r/h2o-package/R/modelselection.R b/h2o-r/h2o-package/R/modelselection.R index 8ecaac0592e3..3171bd8fa268 100644 --- a/h2o-r/h2o-package/R/modelselection.R +++ b/h2o-r/h2o-package/R/modelselection.R @@ -108,7 +108,6 @@ #' @param max_after_balance_size Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires #' balance_classes. Defaults to 5.0. #' @param max_runtime_secs Maximum allowed runtime in seconds for model training. Use 0 to disable. Defaults to 0. -#' @param custom_metric_func Reference to custom evaluation function, format: `language:keyName=funcName` #' @param nparallelism number of models to build in parallel. Defaults to 0.0 which is adaptive to the system capability Defaults to #' 0. #' @param max_predictor_number Maximum number of predictors to be considered when building GLM models. Defaults to 1. Defaults to 1. @@ -190,7 +189,6 @@ h2o.modelSelection <- function(x, class_sampling_factors = NULL, max_after_balance_size = 5.0, max_runtime_secs = 0, - custom_metric_func = NULL, nparallelism = 0, max_predictor_number = 1, min_predictor_number = 1, @@ -315,8 +313,6 @@ h2o.modelSelection <- function(x, parms$max_after_balance_size <- max_after_balance_size if (!missing(max_runtime_secs)) parms$max_runtime_secs <- max_runtime_secs - if (!missing(custom_metric_func)) - parms$custom_metric_func <- custom_metric_func if (!missing(nparallelism)) parms$nparallelism <- nparallelism if (!missing(max_predictor_number)) @@ -387,7 +383,6 @@ h2o.modelSelection <- function(x, class_sampling_factors = NULL, max_after_balance_size = 5.0, max_runtime_secs = 0, - custom_metric_func = NULL, nparallelism = 0, max_predictor_number = 1, min_predictor_number = 1, @@ -517,8 +512,6 @@ h2o.modelSelection <- function(x, parms$max_after_balance_size <- max_after_balance_size if (!missing(max_runtime_secs)) parms$max_runtime_secs <- max_runtime_secs - if (!missing(custom_metric_func)) - parms$custom_metric_func <- custom_metric_func if (!missing(nparallelism)) parms$nparallelism <- nparallelism if (!missing(max_predictor_number))