-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathmnist.py
41 lines (28 loc) · 1.18 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""Prep and upload the MNIST datasset"""
# Contributors: Michelle Tanco - michelle.tanco@h2oai
# Created: March 8th, 2020
from typing import Union, List
from h2oaicore.data import CustomData
import datatable as dt
import numpy as np
import pandas as pd
# _global_modules_needed_by_name = ['mnist==0.2.2']
# import mnist
class MNISTData(CustomData):
@staticmethod
def create_data(X: dt.Frame = None):
from h2oaicore.models_utils import import_tensorflow
tf = import_tensorflow()
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((len(train_images), -1))
test_images = test_images.reshape((len(test_images), -1))
train_data = pd.DataFrame(train_images)
test_data = pd.DataFrame(test_images)
train_data = train_data.add_prefix('b')
test_data = test_data.add_prefix('b')
train_data["number"] = train_labels
test_data["number"] = test_labels
train_data = train_data.apply(np.int8)
test_data = test_data.apply(np.int8)
return {"mnist_train": train_data, "mnist_test": test_data}