-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
272 lines (237 loc) · 12 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
from torch.optim import Adam
from torchvision.utils import save_image
from torch.nn import Upsample
from network import Generator, Discriminator
from data_loader import get_loader
import time
import datetime
import os
import json
from collections import OrderedDict
from logger import Logger
class Solver(object):
def __init__(self, configuration):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# retrieve configuration variables
self.data_path = configuration.data_path
self.crop_size = configuration.crop_size
self.final_size = configuration.final_size
self.batch_size = configuration.batch_size
self.alternating_step = configuration.alternating_step
self.ncritic = configuration.ncritic
self.lambda_gp = configuration.lambda_gp
self.debug_step = configuration.debug_step
self.save_step = configuration.save_step
self.max_checkpoints = configuration.max_checkpoints
self.log_step = configuration.log_step
# self.tflogger = Logger(configuration.log_dir)
## directoriess
self.train_dir = configuration.train_dir
self.img_dir = configuration.img_dir
self.models_dir = configuration.models_dir
## variables
self.eps_drift = 0.001
self.resume_training = configuration.resume_training
self._initialise_networks()
def _initialise_networks(self):
self.generator = Generator(final_size=self.final_size)
self.generator.generate_network()
self.g_optimizer = Adam(self.generator.parameters(), lr=0.001, betas=(0, 0.99))
self.discriminator = Discriminator(final_size=self.final_size)
self.discriminator.generate_network()
self.d_optimizer = Adam(self.discriminator.parameters(), lr=0.001, betas=(0, 0.99))
self.num_channels = min(self.generator.num_channels,
self.generator.max_channels)
self.upsample = [Upsample(scale_factor=2**i)
for i in reversed(range(self.generator.num_blocks))]
def print_debugging_images(self, generator, latent_vectors, shape, index,
alpha, iteration):
with torch.no_grad():
columns = []
for i in range(shape[0]):
row = []
for j in range(shape[1]):
img_ij = generator(latent_vectors[i * shape[1] +
j].unsqueeze_(0),
index, alpha)
img_ij = self.upsample[index](img_ij)
row.append(img_ij)
columns.append(torch.cat(row, dim=3))
debugging_image = torch.cat(columns, dim=2)
# denorm
debugging_image = (debugging_image + 1) / 2
debugging_image.clamp_(0, 1)
save_image(debugging_image.data,
os.path.join(self.img_dir, "debug_{}_{}.png".format(index,
iteration)))
def save_trained_networks(self, block_index, phase, step):
models_file = os.path.join(self.models_dir, "models.json")
if os.path.isfile(models_file):
with open(models_file, 'r') as file:
models_config = json.load(file)
else:
models_config = json.loads('{ "checkpoints": [] }')
generator_save_name = "generator_{}_{}_{}.pth".format(
block_index, phase, step
)
torch.save(self.generator.state_dict(),
os.path.join(self.models_dir, generator_save_name))
discriminator_save_name = "discriminator_{}_{}_{}.pth".format(
block_index, phase, step
)
torch.save(self.discriminator.state_dict(),
os.path.join(self.models_dir, discriminator_save_name))
models_config["checkpoints"].append(OrderedDict({
"block_index": block_index,
"phase": phase,
"step": step,
"generator": generator_save_name,
"discriminator": discriminator_save_name
}))
if len(models_config["checkpoints"]) > self.max_checkpoints:
old_save = models_config["checkpoints"][0]
os.remove(os.path.join(self.models_dir, old_save["generator"]))
os.remove(os.path.join(self.models_dir, old_save["discriminator"]))
models_config["checkpoints"] = models_config["checkpoints"][1:]
with open(os.path.join(self.models_dir, "models.json"), 'w') as file:
json.dump(models_config, file, indent=4)
def load_trained_networks(self):
models_file = os.path.join(self.models_dir, "models.json")
if os.path.isfile(models_file):
with open(models_file, 'r') as file:
models_config = json.load(file)
else:
raise FileNotFoundError("File 'models.json' not found in {"
"}".format(self.models_dir))
last_checkpoint = models_config["checkpoints"][-1]
block_index = last_checkpoint["block_index"]
phase = last_checkpoint["phase"]
step = last_checkpoint["step"]
generator_save_name = os.path.join(
self.models_dir, last_checkpoint["generator"])
discriminator_save_name = os.path.join(
self.models_dir, last_checkpoint["discriminator"])
self.generator.load_state_dict(torch.load(generator_save_name))
self.discriminator.load_state_dict(torch.load(discriminator_save_name))
return block_index, phase, step
def train(self):
# get debugging vectors
N = (5, 10)
debug_vectors = torch.randn(N[0] * N[1], self.num_channels, 1,
1).to(self.device)
# get loader
loader = get_loader(self.data_path, self.crop_size, self.batch_size)
losses = {
"d_loss_real": None,
"d_loss_fake": None,
"g_loss": None
}
# resume training if needed
if self.resume_training:
start_index, start_phase, start_step = self.load_trained_networks()
else:
start_index, start_phase, start_step = (0, "fade", 0)
# training loop
start_time = time.time()
absolute_step = -1
for index in range(start_index, self.generator.num_blocks):
loader.dataset.set_transform_by_index(index)
data_iterator = iter(loader)
for phase in ('fade', 'stabilize'):
if index == 0 and phase == 'fade': continue
if self.resume_training and \
index == start_index and \
phase is not start_phase:
continue #
if phase == 'phade': self.alternating_step = 10000 #FIXME del
print("index: {}, size: {}x{}, phase: {}".format(
index, 2 ** (index + 2), 2 ** (index + 2), phase))
if self.resume_training and \
phase == start_phase and \
index == start_index:
step_range = range(start_step, self.alternating_step)
else:
step_range = range(self.alternating_step)
for i in step_range:
absolute_step += 1
try:
batch = next(data_iterator)
except:
data_iterator = iter(loader)
batch = next(data_iterator)
alpha = i / self.alternating_step if phase == "fade" else 1.0
batch = batch.to(self.device)
d_loss_real = - torch.mean(
self.discriminator(batch, index, alpha))
losses["d_loss_real"] = torch.mean(d_loss_real).data[0]
latent = torch.randn(
batch.size(0), self.num_channels, 1, 1).to(self.device)
fake_batch = self.generator(latent, index, alpha).detach()
d_loss_fake = torch.mean(
self.discriminator(fake_batch, index, alpha))
losses["d_loss_fake"] = torch.mean(d_loss_fake).data[0]
# drift factor
drift = d_loss_real.pow(2) + d_loss_fake.pow(2)
d_loss = d_loss_real + d_loss_fake + self.eps_drift * drift
self.d_optimizer.zero_grad()
d_loss.backward() # if retain_graph=True
# then gp works but I'm not sure it's right
self.d_optimizer.step()
# Compute gradient penalty
alpha_gp = torch.rand(batch.size(0), 1, 1, 1).to(self.device)
# mind that x_hat must be both detached from the previous
# gradient graph (from fake_barch) and with
# requires_graph=True so that the gradient can be computed
x_hat = (alpha_gp * batch + (1 - alpha_gp) *
fake_batch).requires_grad_(True)
# x_hat = torch.cuda.FloatTensor(x_hat).requires_grad_(True)
out = self.discriminator(x_hat, index, alpha)
grad = torch.autograd.grad(
outputs=out,
inputs=x_hat,
grad_outputs=torch.ones_like(out).to(self.device),
retain_graph=True,
create_graph=True,
only_inputs=True
)[0]
grad = grad.view(grad.size(0), -1) # is this the same as
# detach?
l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((l2norm - 1) ** 2)
d_loss_gp *= self.lambda_gp
self.d_optimizer.zero_grad()
d_loss_gp.backward()
self.d_optimizer.step()
# train generator
if (i + 1) % self.ncritic == 0:
latent = torch.randn(
self.batch_size, self.num_channels, 1, 1).to(self.device)
fake_batch = self.generator(latent, index, alpha)
g_loss = - torch.mean(self.discriminator(
fake_batch, index, alpha))
losses["g_loss"] = torch.mean(g_loss).data[0]
self.g_optimizer.zero_grad()
g_loss.backward()
self.g_optimizer.step()
# tensorboard logging
if (i + 1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
print("{}:{}:{}/{} time {}, d_loss_real {}, "
"d_loss_fake {}, "
"g_loss {}, alpha {}".format(index, phase, i,
self.alternating_step,
elapsed,
d_loss_real,
d_loss_fake,
g_loss, alpha))
for name, value in losses.items():
self.tflogger.scalar_summary(name, value, absolute_step)
# print debugging images
if (i + 1) % self.debug_step == 0:
self.print_debugging_images(
self.generator, debug_vectors, N, index, alpha, i)
# save trained networks
if (i + 1) % self.save_step == 0:
self.save_trained_networks(index, phase, i)