|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 5, |
| 6 | + "id": "aab81d47-65e9-40a1-845d-62b661f8a221", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [ |
| 9 | + { |
| 10 | + "name": "stderr", |
| 11 | + "output_type": "stream", |
| 12 | + "text": [ |
| 13 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\3559580778.py:21: SettingWithCopyWarning: \n", |
| 14 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 15 | + "\n", |
| 16 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 17 | + " X['Subluxation_percent'].fillna(X['Subluxation_percent'].mean(), inplace=True)\n", |
| 18 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\3559580778.py:22: SettingWithCopyWarning: \n", |
| 19 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 20 | + "\n", |
| 21 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 22 | + " X['Femoral_neck_angle'].fillna(X['Femoral_neck_angle'].mean(), inplace=True)\n", |
| 23 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\3559580778.py:23: SettingWithCopyWarning: \n", |
| 24 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 25 | + "\n", |
| 26 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 27 | + " X['Lateral_center_edge_angle'].fillna(X['Lateral_center_edge_angle'].mean(), inplace=True)\n", |
| 28 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\3559580778.py:24: SettingWithCopyWarning: \n", |
| 29 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 30 | + "\n", |
| 31 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 32 | + " X['extrusion_index'].fillna(X['extrusion_index'].mean(), inplace=True)\n" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "name": "stdout", |
| 37 | + "output_type": "stream", |
| 38 | + "text": [ |
| 39 | + "Accuracy: 58.90%\n", |
| 40 | + " precision recall f1-score support\n", |
| 41 | + "\n", |
| 42 | + " 0 0.33 0.43 0.38 21\n", |
| 43 | + " 1 0.74 0.65 0.69 52\n", |
| 44 | + "\n", |
| 45 | + " accuracy 0.59 73\n", |
| 46 | + " macro avg 0.54 0.54 0.53 73\n", |
| 47 | + "weighted avg 0.62 0.59 0.60 73\n", |
| 48 | + "\n", |
| 49 | + "Number of iterations to reach convergence: 1883\n" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "data": { |
| 54 | + "text/plain": [ |
| 55 | + "['cluster_model.joblib']" |
| 56 | + ] |
| 57 | + }, |
| 58 | + "execution_count": 5, |
| 59 | + "metadata": {}, |
| 60 | + "output_type": "execute_result" |
| 61 | + } |
| 62 | + ], |
| 63 | + "source": [ |
| 64 | + "# Import Libraries\n", |
| 65 | + "import pandas as pd\n", |
| 66 | + "import numpy as np\n", |
| 67 | + "from sklearn.model_selection import train_test_split\n", |
| 68 | + "from sklearn.preprocessing import StandardScaler\n", |
| 69 | + "from sklearn.neural_network import MLPClassifier\n", |
| 70 | + "from sklearn.metrics import accuracy_score, classification_report\n", |
| 71 | + "from joblib import dump\n", |
| 72 | + "\n", |
| 73 | + "# Load Data\n", |
| 74 | + "file_path = ' ' #File path here\n", |
| 75 | + "data = pd.read_csv(file_path)\n", |
| 76 | + "\n", |
| 77 | + "# Select Features and Target\n", |
| 78 | + "features = ['Gender', 'Subluxation_percent', 'Femoral_neck_angle', 'Lateral_center_edge_angle', 'extrusion_index']\n", |
| 79 | + "target = 'Cluster' # Replace with the actual column name for the cluster\n", |
| 80 | + "X = data[features]\n", |
| 81 | + "y = data[target]\n", |
| 82 | + "\n", |
| 83 | + "# Preprocess Data\n", |
| 84 | + "X['Subluxation_percent'].fillna(X['Subluxation_percent'].mean(), inplace=True)\n", |
| 85 | + "X['Femoral_neck_angle'].fillna(X['Femoral_neck_angle'].mean(), inplace=True)\n", |
| 86 | + "X['Lateral_center_edge_angle'].fillna(X['Lateral_center_edge_angle'].mean(), inplace=True)\n", |
| 87 | + "X['extrusion_index'].fillna(X['extrusion_index'].mean(), inplace=True)\n", |
| 88 | + "if X['Gender'].dtype == 'object':\n", |
| 89 | + " X['Gender'] = X['Gender'].astype('category').cat.codes\n", |
| 90 | + "scaler = StandardScaler()\n", |
| 91 | + "X_scaled = scaler.fit_transform(X)\n", |
| 92 | + "\n", |
| 93 | + "# Split Data\n", |
| 94 | + "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n", |
| 95 | + "\n", |
| 96 | + "# Build and Train ANN\n", |
| 97 | + "mlp = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=2000, random_state=42) # Increase max_iter\n", |
| 98 | + "mlp.fit(X_train, y_train)\n", |
| 99 | + "\n", |
| 100 | + "# Evaluate Model\n", |
| 101 | + "y_pred = mlp.predict(X_test)\n", |
| 102 | + "accuracy = accuracy_score(y_test, y_pred)\n", |
| 103 | + "print(f\"Accuracy: {accuracy * 100:.2f}%\")\n", |
| 104 | + "print(classification_report(y_test, y_pred))\n", |
| 105 | + "\n", |
| 106 | + "# Display Number of Iterations\n", |
| 107 | + "print(f\"Number of iterations to reach convergence: {mlp.n_iter_}\")\n", |
| 108 | + "\n", |
| 109 | + "# Save Model (Optional)\n", |
| 110 | + "dump(mlp, 'cluster_model.joblib')\n" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 6, |
| 116 | + "id": "c1d07011-f602-4411-a224-4938ca3ce7f9", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [ |
| 119 | + { |
| 120 | + "name": "stdout", |
| 121 | + "output_type": "stream", |
| 122 | + "text": [ |
| 123 | + "Accuracy: 58.90%\n", |
| 124 | + "Precision: 73.91%\n", |
| 125 | + "Recall: 65.38%\n", |
| 126 | + "F1-Score: 69.39%\n", |
| 127 | + "Misclassification Rate: 41.10%\n", |
| 128 | + "AUC of ROC: 56.32%\n" |
| 129 | + ] |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "#calculate metrics\n", |
| 134 | + "from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix\n", |
| 135 | + "\n", |
| 136 | + "# Predict Class Labels\n", |
| 137 | + "y_pred = mlp.predict(X_test)\n", |
| 138 | + "\n", |
| 139 | + "# Calculate Accuracy\n", |
| 140 | + "accuracy = accuracy_score(y_test, y_pred)\n", |
| 141 | + "\n", |
| 142 | + "# Calculate Precision\n", |
| 143 | + "precision = precision_score(y_test, y_pred)\n", |
| 144 | + "\n", |
| 145 | + "# Calculate Recall\n", |
| 146 | + "recall = recall_score(y_test, y_pred)\n", |
| 147 | + "\n", |
| 148 | + "# Calculate F1-Score\n", |
| 149 | + "f1 = f1_score(y_test, y_pred)\n", |
| 150 | + "\n", |
| 151 | + "# Calculate Misclassification Rate\n", |
| 152 | + "misclassification_rate = 1 - accuracy\n", |
| 153 | + "\n", |
| 154 | + "# Calculate AUC-ROC\n", |
| 155 | + "# Note: You'll need to use predict_proba to get the probability estimates for the positive class\n", |
| 156 | + "y_prob = mlp.predict_proba(X_test)[:, 1]\n", |
| 157 | + "auc_roc = roc_auc_score(y_test, y_prob)\n", |
| 158 | + "\n", |
| 159 | + "# Print Results\n", |
| 160 | + "print(f\"Accuracy: {accuracy * 100:.2f}%\")\n", |
| 161 | + "print(f\"Precision: {precision * 100:.2f}%\")\n", |
| 162 | + "print(f\"Recall: {recall * 100:.2f}%\")\n", |
| 163 | + "print(f\"F1-Score: {f1 * 100:.2f}%\")\n", |
| 164 | + "print(f\"Misclassification Rate: {misclassification_rate * 100:.2f}%\")\n", |
| 165 | + "print(f\"AUC of ROC: {auc_roc * 100:.2f}%\")\n" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 7, |
| 171 | + "id": "93c0ad8a-e241-4bc4-a6cc-76e04879932f", |
| 172 | + "metadata": {}, |
| 173 | + "outputs": [ |
| 174 | + { |
| 175 | + "name": "stdout", |
| 176 | + "output_type": "stream", |
| 177 | + "text": [ |
| 178 | + "File saved to C:/Work/AI_Sports_Medicine/Hip/DDH/Cluster/Prediction_ANN/internal_predicted_clusters.csv\n" |
| 179 | + ] |
| 180 | + } |
| 181 | + ], |
| 182 | + "source": [ |
| 183 | + "##CSV of internal dataset\n", |
| 184 | + "# Create a new DataFrame with the original data\n", |
| 185 | + "new_data = data.copy()\n", |
| 186 | + "\n", |
| 187 | + "# Add the predicted cluster column\n", |
| 188 | + "new_data['predicted_cluster'] = mlp.predict(scaler.transform(X))\n", |
| 189 | + "\n", |
| 190 | + "# Save the new DataFrame as a CSV file\n", |
| 191 | + "output_path = ''\n", |
| 192 | + "new_data.to_csv(output_path, index=False)\n", |
| 193 | + "\n", |
| 194 | + "print(f\"File saved to {output_path}\")\n" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 8, |
| 200 | + "id": "87e3670f-9246-4ef0-9e4c-b6a8d5dca0d1", |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [ |
| 203 | + { |
| 204 | + "name": "stdout", |
| 205 | + "output_type": "stream", |
| 206 | + "text": [ |
| 207 | + "External Accuracy: 71.43%\n", |
| 208 | + "External Precision: 78.69%\n", |
| 209 | + "External Recall: 81.36%\n", |
| 210 | + "External F1-Score: 80.00%\n", |
| 211 | + "External Misclassification Rate: 28.57%\n", |
| 212 | + "External AUC of ROC: 70.92%\n", |
| 213 | + "External file saved to C:/Work/AI_Sports_Medicine/Hip/DDH/Cluster/Prediction_ANN/external_predicted_clusters.csv\n" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "name": "stderr", |
| 218 | + "output_type": "stream", |
| 219 | + "text": [ |
| 220 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\4116426935.py:8: SettingWithCopyWarning: \n", |
| 221 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 222 | + "\n", |
| 223 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 224 | + " external_X['Subluxation_percent'].fillna(external_X['Subluxation_percent'].mean(), inplace=True)\n", |
| 225 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\4116426935.py:9: SettingWithCopyWarning: \n", |
| 226 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 227 | + "\n", |
| 228 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 229 | + " external_X['Femoral_neck_angle'].fillna(external_X['Femoral_neck_angle'].mean(), inplace=True)\n", |
| 230 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\4116426935.py:10: SettingWithCopyWarning: \n", |
| 231 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 232 | + "\n", |
| 233 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 234 | + " external_X['Lateral_center_edge_angle'].fillna(external_X['Lateral_center_edge_angle'].mean(), inplace=True)\n", |
| 235 | + "C:\\Users\\36819\\AppData\\Local\\Temp\\ipykernel_44224\\4116426935.py:11: SettingWithCopyWarning: \n", |
| 236 | + "A value is trying to be set on a copy of a slice from a DataFrame\n", |
| 237 | + "\n", |
| 238 | + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
| 239 | + " external_X['extrusion_index'].fillna(external_X['extrusion_index'].mean(), inplace=True)\n" |
| 240 | + ] |
| 241 | + } |
| 242 | + ], |
| 243 | + "source": [ |
| 244 | + "##External validatoin\n", |
| 245 | + "# Read the external dataset\n", |
| 246 | + "external_file_path = '' #File path here\n", |
| 247 | + "external_data = pd.read_csv(external_file_path)\n", |
| 248 | + "\n", |
| 249 | + "# Select features and preprocess\n", |
| 250 | + "external_X = external_data[features]\n", |
| 251 | + "external_X['Subluxation_percent'].fillna(external_X['Subluxation_percent'].mean(), inplace=True)\n", |
| 252 | + "external_X['Femoral_neck_angle'].fillna(external_X['Femoral_neck_angle'].mean(), inplace=True)\n", |
| 253 | + "external_X['Lateral_center_edge_angle'].fillna(external_X['Lateral_center_edge_angle'].mean(), inplace=True)\n", |
| 254 | + "external_X['extrusion_index'].fillna(external_X['extrusion_index'].mean(), inplace=True)\n", |
| 255 | + "if external_X['Gender'].dtype == 'object':\n", |
| 256 | + " external_X['Gender'] = external_X['Gender'].astype('category').cat.codes\n", |
| 257 | + "\n", |
| 258 | + "# Scale the features\n", |
| 259 | + "external_X_scaled = scaler.transform(external_X)\n", |
| 260 | + "\n", |
| 261 | + "# Groundtruth cluster label (updated column name)\n", |
| 262 | + "external_y = external_data['Groundtruth_Cluster']\n", |
| 263 | + "\n", |
| 264 | + "# Predict clusters for the external dataset\n", |
| 265 | + "external_y_pred = mlp.predict(external_X_scaled)\n", |
| 266 | + "\n", |
| 267 | + "# Calculate metrics\n", |
| 268 | + "external_accuracy = accuracy_score(external_y, external_y_pred)\n", |
| 269 | + "external_precision = precision_score(external_y, external_y_pred)\n", |
| 270 | + "external_recall = recall_score(external_y, external_y_pred)\n", |
| 271 | + "external_f1 = f1_score(external_y, external_y_pred)\n", |
| 272 | + "external_misclassification_rate = 1 - external_accuracy\n", |
| 273 | + "external_y_prob = mlp.predict_proba(external_X_scaled)[:, 1]\n", |
| 274 | + "external_auc_roc = roc_auc_score(external_y, external_y_prob)\n", |
| 275 | + "\n", |
| 276 | + "# Print results\n", |
| 277 | + "print(f\"External Accuracy: {external_accuracy * 100:.2f}%\")\n", |
| 278 | + "print(f\"External Precision: {external_precision * 100:.2f}%\")\n", |
| 279 | + "print(f\"External Recall: {external_recall * 100:.2f}%\")\n", |
| 280 | + "print(f\"External F1-Score: {external_f1 * 100:.2f}%\")\n", |
| 281 | + "print(f\"External Misclassification Rate: {external_misclassification_rate * 100:.2f}%\")\n", |
| 282 | + "print(f\"External AUC of ROC: {external_auc_roc * 100:.2f}%\")\n", |
| 283 | + "\n", |
| 284 | + "# Create a new DataFrame with the external data\n", |
| 285 | + "external_data_with_prediction = external_data.copy()\n", |
| 286 | + "\n", |
| 287 | + "# Adding the ground truth cluster labels (y_external) to the external predicted data DataFrame\n", |
| 288 | + "external_data_with_prediction['ground_truth_cluster'] = external_data['Groundtruth_Cluster']\n", |
| 289 | + "\n", |
| 290 | + "# Add the predicted cluster column\n", |
| 291 | + "external_data_with_prediction['predicted_cluster'] = external_y_pred\n", |
| 292 | + "\n", |
| 293 | + "# Save the new DataFrame as a CSV file\n", |
| 294 | + "external_output_path = ' '\n", |
| 295 | + "external_data_with_prediction.to_csv(external_output_path, index=False)\n", |
| 296 | + "\n", |
| 297 | + "print(f\"External file saved to {external_output_path}\")\n", |
| 298 | + "\n" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": null, |
| 304 | + "id": "561e6941-5395-47cb-9781-e572633afffb", |
| 305 | + "metadata": {}, |
| 306 | + "outputs": [], |
| 307 | + "source": [] |
| 308 | + } |
| 309 | + ], |
| 310 | + "metadata": { |
| 311 | + "kernelspec": { |
| 312 | + "display_name": "Python 3 (ipykernel)", |
| 313 | + "language": "python", |
| 314 | + "name": "python3" |
| 315 | + }, |
| 316 | + "language_info": { |
| 317 | + "codemirror_mode": { |
| 318 | + "name": "ipython", |
| 319 | + "version": 3 |
| 320 | + }, |
| 321 | + "file_extension": ".py", |
| 322 | + "mimetype": "text/x-python", |
| 323 | + "name": "python", |
| 324 | + "nbconvert_exporter": "python", |
| 325 | + "pygments_lexer": "ipython3", |
| 326 | + "version": "3.11.5" |
| 327 | + } |
| 328 | + }, |
| 329 | + "nbformat": 4, |
| 330 | + "nbformat_minor": 5 |
| 331 | +} |
0 commit comments