-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh.py
149 lines (135 loc) · 4.45 KB
/
mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from dolfin import *
from mshr import *
import numpy as np
import time
def _create_mesh(Random_mesh, d, lx1, lx2, ly1, ly2, lz1, lz2, Nx, Ny, Nz, N, N2, rd):
if Random_mesh and d == 2:
mesh = _symmetric_rectangle_mesh(lx2, ly2, N)
elif Random_mesh and d == 3:
domain = Box(Point(lx1, ly1, lz1), Point(lx2, ly2, lz2))
mesh = generate_mesh(domain, N2)
dolfin.cpp.io.XDMFFile(MPI.COMM_WORLD, rd + '/mesh.xdmf').write(mesh)
elif not Random_mesh and d == 2:
mesh = RectangleMesh(Point(lx1, ly1), Point(lx2, ly2), Nx, Ny, 'crossed')
else:
mesh = BoxMesh(Point(lx1, ly1, lz1), Point(lx2, ly2, lz2), Nx, Ny, Nz)
return mesh
def _symmetric_rectangle_mesh(x1, y1, Nm):
# first symmetrize in the x direction, then symmetrize result in y direction
domain = Rectangle(Point(0.0, 0.0), Point(x1, y1))
mesh = generate_mesh(domain, Nm)
mesh.init()
f2v = mesh.topology()(2, 0)
start_time = time.time()
mesh_sym = Mesh()
editor = MeshEditor()
editor.open(mesh_sym, 'triangle', 2, 2)
nv = mesh.num_vertices()
nf = mesh.num_cells()
cntv = nv
kv = 0
kf = 0
# First count how many vertices will be needed
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
if not near(pnt_orig.x(), 0.0):
cntv += 1
editor.init_vertices(cntv)
editor.init_cells(2 * mesh.num_cells())
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
pnt = Point(pnt_orig.x(), pnt_orig.y())
editor.add_vertex(kv, pnt)
kv += 1
for jf in range(nf):
pnts = f2v(jf)
editor.add_cell(kf, pnts.tolist())
kf += 1
kvf = kv
nb = 0
shifts = [nv] * nv
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
# only add vertices not in the reflection boundary
if not near(pnt_orig.x(), 0.0):
pnt = Point((-1.0) * pnt_orig.x(), pnt_orig.y())
editor.add_vertex(kv, pnt)
shifts[jv] = kvf - nb
kv += 1
else:
nb += 1
shifts[jv] = 0
for jf in range(nf):
pnts = f2v(jf)
vertex_obj = Vertex(mesh, pnts[0])
pnt0 = vertex_obj.point()
vertex_obj = Vertex(mesh, pnts[1])
pnt1 = vertex_obj.point()
vertex_obj = Vertex(mesh, pnts[2])
pnt2 = vertex_obj.point()
# if a vertex is in the reflection boundary, use original
pnts = pnts + [shifts[pnts[0]], shifts[pnts[1]], shifts[pnts[2]]]
editor.add_cell(kf, pnts.tolist())
kf += 1
editor.close()
mesh = Mesh(mesh_sym)
mesh.init()
f2v = mesh.topology()(2, 0)
mesh_sym = Mesh()
editor = MeshEditor()
editor.open(mesh_sym, 'triangle', 2, 2)
nv = mesh.num_vertices()
nf = mesh.num_cells()
cntv = nv
kv = 0
kf = 0
# First count how many vertices will be needed
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
if not near(pnt_orig.y(), 0.0):
cntv += 1
editor.init_vertices(cntv)
editor.init_cells(2 * mesh.num_cells())
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
pnt = Point(pnt_orig.x(), pnt_orig.y())
editor.add_vertex(kv, pnt)
kv += 1
for jf in range(nf):
pnts = f2v(jf)
editor.add_cell(kf, pnts.tolist())
kf += 1
kvf = kv
nb = 0
shifts = [nv] * nv
for jv in range(nv):
vertex_obj = Vertex(mesh, jv)
pnt_orig = vertex_obj.point()
# only add vertices not in the reflection boundary
if not near(pnt_orig.y(), 0.0):
pnt = Point(pnt_orig.x(), (-1.0) * pnt_orig.y())
editor.add_vertex(kv, pnt)
shifts[jv] = kvf - nb
kv += 1
else:
nb += 1
shifts[jv] = 0
for jf in range(nf):
pnts = f2v(jf)
vertex_obj = Vertex(mesh, pnts[0])
pnt0 = vertex_obj.point()
vertex_obj = Vertex(mesh, pnts[1])
pnt1 = vertex_obj.point()
vertex_obj = Vertex(mesh, pnts[2])
pnt2 = vertex_obj.point()
# if a vertex is in the reflection boundary, use original
pnts = pnts + [shifts[pnts[0]], shifts[pnts[1]], shifts[pnts[2]]]
editor.add_cell(kf, pnts.tolist())
kf += 1
editor.close()
return mesh_sym