-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain-original.py
257 lines (210 loc) · 8.85 KB
/
main-original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
"""
AutoDraw - inital version
original (incomplete) code:
Austin Nguyen, Jun 1, 2020
How I Used Machine Learning to Automatically Hand-Draw Any Picture
Supervised and unsupervised learning made easy!
https://towardsdatascience.com/how-i-used-machine-learning-to-automatically-hand-draw-any-picture-7d024d0de997
code completion:
Bartlomiej "furas" Burek (https://blog.furas.pl)
date: 2021.05.04
# pip install opencv-python
# pip install numpy
# pip install PyAutoGUI
# pip install sklearn
# pip install kdtree
"""
import cv2
import numpy as np
import pyautogui as pg
from sklearn.cluster import KMeans
from kdtree import create
from collections import defaultdict
import operator
import time
class AutoDraw(object):
def __init__(self, name, blur = 0):
# Tunable parameters
self.detail = 1
self.scale = 7/12
self.sketch_before = False
self.with_color = True
self.num_colors = 10
self.outline_again = False
# Load Image. Switch axes to match computer screen
self.img = self.load_img(name)
self.blur = blur
self.img = np.swapaxes(self.img, 0, 1)
self.img_shape = self.img.shape
self.dim = pg.size()
# Scale to draw inside part of screen
self.startX = ((1 - self.scale) / 2)*self.dim[0]
self.startY = ((1 - self.scale) / 2)*self.dim[1]
self.dim = (self.dim[0] * self.scale, self.dim[1] * self.scale)
# fit the picture into this section of the screen
if self.img_shape[1] > self.img_shape[0]:
# if it's taller that it is wide, truncate the wide section
self.dim = (int(self.dim[1] * (self.img_shape[0] / self.img_shape[1])), self.dim[1])
else:
# if it's wider than it is tall, truncate the tall section
self.dim = (self.dim[0], int(self.dim[0] *(self.img_shape[1] / self.img_shape[0])))
# Get dimension to translate picture. Dimension 1 and 0 are switched due to comp dimensions
ratio = self.img.shape[0] / self.img.shape[1]
pseudo_x = int(self.img.shape[1] * self.detail)
self.pseudoDim = (pseudo_x, int(pseudo_x * ratio))
# Initialize directions for momentum when creating path
self.maps = {0: (1, 1), 1: (1, 0), 2: (1, -1), 3: (0, -1), 4: (0, 1), 5: (-1, -1), 6: (-1, 0), 7: (-1, 1)}
self.momentum = 1
self.curr_delta = self.maps[self.momentum]
# Create Outline
self.drawing = self.process_img(self.img)
self.show()
def load_img(self, name):
image = cv2.imread(name)
return image
def show(self):
cv2.imshow('image', self.img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def rescale(self, img, dim):
resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
return resized
def translate(self, coord):
ratio = (coord[0] / self.pseudoDim[1], coord[1] / self.pseudoDim[0]) # this is correct
deltas = (int(ratio[0] * self.dim[0]), int(ratio[1] * self.dim[1]))
return self.startX + deltas[0], self.startY + deltas[1]
def process_img(self, img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if self.blur == 2:
gray = cv2.GaussianBlur(gray, (9, 9), 0)
canny = cv2.Canny(gray, 25, 45)
elif self.blur == 1:
gray = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(gray, 25, 45)
else: # no blur
canny = cv2.Canny(gray, 50, 75)
canny = self.rescale(canny, self.pseudoDim)
r, res = cv2.threshold(canny, 50, 255, cv2.THRESH_BINARY_INV)
return res
def execute(self, commands):
press = 0 # flag indicating whether we are putting pressure on paper
for (i, comm) in enumerate(commands):
if type(comm) == str:
if comm == 'UP':
press = 0
if comm == 'DOWN':
press = 1
else:
if press == 0:
pg.moveTo(comm[0], comm[1], 0)
else:
pg.dragTo(comm[0], comm[1], 0)
return
def drawOutline(self):
indices = np.argwhere(self.drawing < 127).tolist() # get the black colors
index_tuples = map(tuple, indices)
self.hashSet = set(index_tuples)
self.KDTree = reate(indices)
self.commands = []
self.curr_pos = (0, 0)
point = self.translate(self.curr_pos)
self.commands.append(point)
print('Please change pen to thin and color to black.')
input("Press enter once ready")
print('')
# DRAW THE BLACK OUTLINE
self.createPath()
input("Ready! Press Enter to draw")
print('5 seconds until drawing beings')
time.sleep(5)
self.execute(self.commands)
def createPath(self):
# check for closest point. Go there. Add click down. Change curr. Remove from set and tree. Then, begin
new_pos = tuple(self.KDTree.search_nn(self.curr_pos)[0].data)
self.commands.append(new_pos)
self.commands.append("DOWN")
self.curr_pos = new_pos
self.KDTree = self.KDTree.remove(list(new_pos))
self.hashSet.remove(new_pos)
while len(self.hashSet) > 0:
prev_direction = self.momentum
candidate = self.checkMomentum(self.curr_pos)
if self.isValid(candidate):
new = tuple(map(operator.add, self.curr_pos, candidate))
new_pos = self.translate(new)
if prev_direction == self.momentum and type(self.commands[-1]) != str: # the direction didn't change
self.commands.pop()
self.commands.append(new_pos)
else:
self.commands.append("UP")
new = tuple(self.KDTree.search_nn(self.curr_pos)[0].data)
new_pos = self.translate(new)
self.commands.append(new_pos)
self.commands.append("DOWN")
self.curr_pos = new
self.KDTree = self.KDTree.remove(list(new))
self.hashSet.remove(new)
print('Making path...number points left: ', len(self.hashSet))
return
def isValid(self, delta):
return len(delta) == 2
def checkMomentum(self, point):
# Returns best next relative move w.r.t. momentum and if in hashset
self.curr_delta = self.maps[self.momentum]
moments = self.maps.values()
deltas = [d for d in moments if (tuple(map(operator.add, point, d)) in self.hashSet)]
deltas.sort(key=self.checkDirection, reverse=True)
if len(deltas) > 0:
best = deltas[0]
self.momentum = [item[0] for item in self.maps.items() if item[1] == best][0]
return best
return [-1]
def checkDirection(self, element):
return self.dot(self.curr_delta, element)
def dot(self, pt1, pt2):
pt1 = self.unit(pt1)
pt2 = self.unit(pt2)
return pt1[0] * pt2[0] + pt1[1] * pt2[1]
def unit(self, point):
norm = (point[0] ** 2 + point[1] ** 2)
norm = np.sqrt(norm)
return point[0] / norm, point[1] / norm
def run(self):
if self.with_color:
color = self.rescale(self.img, self.pseudoDim)
collapsed = np.sum(color, axis=2)/3
fill = np.argwhere(collapsed < 230) # color 2-d indices
fill = np.swapaxes(fill, 0, 1) # swap to index into color
RGB = color[fill[0], fill[1], :]
k_means = KMeans(n_clusters=self.num_colors).fit(RGB)
colors = k_means.cluster_centers_
labels = k_means.labels_
fill = np.swapaxes(fill, 0, 1).tolist() # swap back to make dictionary
label_2_index = defaultdict(list)
for i, j in zip(labels, fill):
label_2_index[i].append(j)
for (i, color) in enumerate(colors):
print('Please change the pen to thick and color to BGR (not RGB) values: ', color)
input("Press enter once ready")
print('')
points = label_2_index[i]
index_tuples = map(tuple, points)
self.hashSet = set(index_tuples)
self.KDTree = create(points)
self.commands = []
self.curr_pos = (0, 0)
point = self.translate(self.curr_pos)
self.commands.append(point)
self.commands.append("UP")
self.createPath()
input('Ready! Press enter to draw: ')
print('5 seconds until drawing begins...')
time.sleep(5)
self.execute(self.commands)
if self.outline_again:
self.drawOutline()
if __name__ == '__main__':
image = 'example1a.png'
ad = AutoDraw(image)
ad.run()