-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbus_arbiter.v
348 lines (314 loc) · 10 KB
/
bus_arbiter.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
//
// LED Suit FPGA Implementation - Multi-output addressable LED driver HDL
// implementation for Kevin's LED suit controller.
// Copyright (C) 2019-2020 Kevin Balke
//
// This file is part of LED Suit FPGA Implementation.
//
// LED Suit FPGA Implementation is free software: you can redistribute it and/or
// modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// LED Suit FPGA Implementation is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with LED Suit FPGA Implementation. If not, see
// <http://www.gnu.org/licenses/>.
//
module bus_arbiter(
input clk,
input rst,
input data_req_0,
input[ADDRESS_WIDTH-1:0] data_addr_0,
output[DATA_WIDTH-1:0] data_0,
output data_rdy_0,
input data_req_1,
input[ADDRESS_WIDTH-1:0] data_addr_1,
output[DATA_WIDTH-1:0] data_1,
output data_rdy_1,
input data_req_2,
input[ADDRESS_WIDTH-1:0] data_addr_2,
output[DATA_WIDTH-1:0] data_2,
output data_rdy_2,
input data_req_3,
input[ADDRESS_WIDTH-1:0] data_addr_3,
output[DATA_WIDTH-1:0] data_3,
output data_rdy_3,
input data_req_4,
input[ADDRESS_WIDTH-1:0] data_addr_4,
output[DATA_WIDTH-1:0] data_4,
output data_rdy_4,
input data_req_5,
input[ADDRESS_WIDTH-1:0] data_addr_5,
output[DATA_WIDTH-1:0] data_5,
output data_rdy_5,
input data_req_6,
input[ADDRESS_WIDTH-1:0] data_addr_6,
output[DATA_WIDTH-1:0] data_6,
output data_rdy_6,
input data_req_7,
input[ADDRESS_WIDTH-1:0] data_addr_7,
output[DATA_WIDTH-1:0] data_7,
output data_rdy_7,
output[ADDRESS_WIDTH-1:0] mem_data_addr,
input[DATA_WIDTH-1:0] mem_data
);
parameter ADDRESS_WIDTH = 8;
parameter DATA_WIDTH = 8;
// ARBITER CHANNEL 0
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_0;
assign data_0 = data_reg_0;
// Output ready latches.
reg data_rdy_reg_0;
assign data_rdy_0 = data_rdy_reg_0;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_0;
assign data_req_outstanding_0 = (data_req_0 & !data_rdy_reg_0);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_0;
// ARBITER CHANNEL 1
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_1;
assign data_1 = data_reg_1;
// Output ready latches.
reg data_rdy_reg_1;
assign data_rdy_1 = data_rdy_reg_1;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_1;
assign data_req_outstanding_1 = (data_req_1 & !data_rdy_reg_1);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_1;
// ARBITER CHANNEL 2
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_2;
assign data_2 = data_reg_2;
// Output ready latches.
reg data_rdy_reg_2;
assign data_rdy_2 = data_rdy_reg_2;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_2;
assign data_req_outstanding_2 = (data_req_2 & !data_rdy_reg_2);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_2;
// ARBITER CHANNEL 3
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_3;
assign data_3 = data_reg_3;
// Output ready latches.
reg data_rdy_reg_3;
assign data_rdy_3 = data_rdy_reg_3;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_3;
assign data_req_outstanding_3 = (data_req_3 & !data_rdy_reg_3);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_3;
// ARBITER CHANNEL 4
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_4;
assign data_4 = data_reg_4;
// Output ready latches.
reg data_rdy_reg_4;
assign data_rdy_4 = data_rdy_reg_4;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_4;
assign data_req_outstanding_4 = (data_req_4 & !data_rdy_reg_4);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_4;
// ARBITER CHANNEL 5
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_5;
assign data_5 = data_reg_5;
// Output ready latches.
reg data_rdy_reg_5;
assign data_rdy_5 = data_rdy_reg_5;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_5;
assign data_req_outstanding_5 = (data_req_5 & !data_rdy_reg_5);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_5;
// ARBITER CHANNEL 6
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_6;
assign data_6 = data_reg_6;
// Output ready latches.
reg data_rdy_reg_6;
assign data_rdy_6 = data_rdy_reg_6;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_6;
assign data_req_outstanding_6 = (data_req_6 & !data_rdy_reg_6);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_6;
// ARBITER CHANNEL 7
// Output data latches.
reg[DATA_WIDTH-1:0] data_reg_7;
assign data_7 = data_reg_7;
// Output ready latches.
reg data_rdy_reg_7;
assign data_rdy_7 = data_rdy_reg_7;
// Outstanding request control lines for each data channel.
wire data_req_outstanding_7;
assign data_req_outstanding_7 = (data_req_7 & !data_rdy_reg_7);
// Read completion latch used to implement memory read value pipelining.
reg data_cmpl_read_reg_7;
// Memory address is determined combinatorially, so that we can grab the value
// from the memory synchronously to the request control line.
assign mem_data_addr = (
(data_req_outstanding_0 ? data_addr_0 :
(data_req_outstanding_1 ? data_addr_1 :
(data_req_outstanding_2 ? data_addr_2 :
(data_req_outstanding_3 ? data_addr_3 :
(data_req_outstanding_4 ? data_addr_4 :
(data_req_outstanding_5 ? data_addr_5 :
(data_req_outstanding_6 ? data_addr_6 :
(data_req_outstanding_7 ? data_addr_7 :
0
)
)
)
)
)
)
)
)
);
always @(posedge clk) begin
if (rst) begin
data_rdy_reg_0 <= 0;
data_reg_0 <= 0;
data_cmpl_read_reg_0 <= 0;
data_rdy_reg_1 <= 0;
data_reg_1 <= 0;
data_cmpl_read_reg_1 <= 0;
data_rdy_reg_2 <= 0;
data_reg_2 <= 0;
data_cmpl_read_reg_2 <= 0;
data_rdy_reg_3 <= 0;
data_reg_3 <= 0;
data_cmpl_read_reg_3 <= 0;
data_rdy_reg_4 <= 0;
data_reg_4 <= 0;
data_cmpl_read_reg_4 <= 0;
data_rdy_reg_5 <= 0;
data_reg_5 <= 0;
data_cmpl_read_reg_5 <= 0;
data_rdy_reg_6 <= 0;
data_reg_6 <= 0;
data_cmpl_read_reg_6 <= 0;
data_rdy_reg_7 <= 0;
data_reg_7 <= 0;
data_cmpl_read_reg_7 <= 0;
end else begin
// If request control line goes low, reset the ready latch.
if (!data_req_0) begin
data_rdy_reg_0 <= 0;
data_cmpl_read_reg_0 <= 0;
end
if (!data_req_1) begin
data_rdy_reg_1 <= 0;
data_cmpl_read_reg_1 <= 0;
end
if (!data_req_2) begin
data_rdy_reg_2 <= 0;
data_cmpl_read_reg_2 <= 0;
end
if (!data_req_3) begin
data_rdy_reg_3 <= 0;
data_cmpl_read_reg_3 <= 0;
end
if (!data_req_4) begin
data_rdy_reg_4 <= 0;
data_cmpl_read_reg_4 <= 0;
end
if (!data_req_5) begin
data_rdy_reg_5 <= 0;
data_cmpl_read_reg_5 <= 0;
end
if (!data_req_6) begin
data_rdy_reg_6 <= 0;
data_cmpl_read_reg_6 <= 0;
end
if (!data_req_7) begin
data_rdy_reg_7 <= 0;
data_cmpl_read_reg_7 <= 0;
end
// Priority from 0 -> N: Read memory cell and latch to output.
if (data_req_outstanding_0) begin
if (data_cmpl_read_reg_0) begin
data_reg_0 <= mem_data;
data_rdy_reg_0 <= 1;
end else begin
data_cmpl_read_reg_0 <= 1;
end
end
else
if (data_req_outstanding_1) begin
if (data_cmpl_read_reg_1) begin
data_reg_1 <= mem_data;
data_rdy_reg_1 <= 1;
end else begin
data_cmpl_read_reg_1 <= 1;
end
end
else
if (data_req_outstanding_2) begin
if (data_cmpl_read_reg_2) begin
data_reg_2 <= mem_data;
data_rdy_reg_2 <= 1;
end else begin
data_cmpl_read_reg_2 <= 1;
end
end
else
if (data_req_outstanding_3) begin
if (data_cmpl_read_reg_3) begin
data_reg_3 <= mem_data;
data_rdy_reg_3 <= 1;
end else begin
data_cmpl_read_reg_3 <= 1;
end
end
else
if (data_req_outstanding_4) begin
if (data_cmpl_read_reg_4) begin
data_reg_4 <= mem_data;
data_rdy_reg_4 <= 1;
end else begin
data_cmpl_read_reg_4 <= 1;
end
end
else
if (data_req_outstanding_5) begin
if (data_cmpl_read_reg_5) begin
data_reg_5 <= mem_data;
data_rdy_reg_5 <= 1;
end else begin
data_cmpl_read_reg_5 <= 1;
end
end
else
if (data_req_outstanding_6) begin
if (data_cmpl_read_reg_6) begin
data_reg_6 <= mem_data;
data_rdy_reg_6 <= 1;
end else begin
data_cmpl_read_reg_6 <= 1;
end
end
else
if (data_req_outstanding_7) begin
if (data_cmpl_read_reg_7) begin
data_reg_7 <= mem_data;
data_rdy_reg_7 <= 1;
end else begin
data_cmpl_read_reg_7 <= 1;
end
end
end
end
endmodule