-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmobilefacenet.py
219 lines (185 loc) · 7.7 KB
/
mobilefacenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Parameter
from config import device, num_classes, emb_size
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, padding, bias=False):
super(DepthwiseSeparableConv, self).__init__()
self.depthwise = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, padding=padding, groups=in_planes,
bias=bias)
self.pointwise = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=bias)
self.bn1 = nn.BatchNorm2d(in_planes)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU()
def forward(self, x):
x = self.depthwise(x)
x = self.bn1(x)
x = self.relu(x)
x = self.pointwise(x)
x = self.bn2(x)
x = self.relu(x)
return x
class GDConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, padding, bias=False):
super(GDConv, self).__init__()
self.depthwise = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, padding=padding, groups=in_planes,
bias=bias)
self.bn = nn.BatchNorm2d(in_planes)
def forward(self, x):
x = self.depthwise(x)
x = self.bn(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileFaceNet(nn.Module):
def __init__(self, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
"""
super(MobileFaceNet, self).__init__()
block = InvertedResidual
input_channel = 64
last_channel = 512
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[2, 64, 5, 2],
[4, 128, 1, 2],
[2, 128, 6, 1],
[4, 128, 1, 2],
[2, 128, 2, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
# input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
self.conv1 = ConvBNReLU(3, input_channel, stride=2)
self.dw_conv = DepthwiseSeparableConv(in_planes=64, out_planes=64, kernel_size=3, padding=1)
features = list()
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
self.conv2 = ConvBNReLU(input_channel, self.last_channel, kernel_size=1)
self.gdconv = GDConv(in_planes=512, out_planes=512, kernel_size=7, padding=0)
self.conv3 = nn.Conv2d(512, 128, kernel_size=1)
self.bn = nn.BatchNorm2d(128)
# make it nn.Sequential
self.features = nn.Sequential(*features)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.conv1(x)
x = self.dw_conv(x)
x = self.features(x)
x = self.conv2(x)
x = self.gdconv(x)
x = self.conv3(x)
x = self.bn(x)
x = x.view(x.size(0), -1)
return x
class ArcMarginModel(nn.Module):
def __init__(self, args):
super(ArcMarginModel, self).__init__()
self.weight = Parameter(torch.FloatTensor(num_classes, emb_size))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = args.easy_margin
self.m = args.margin_m
self.s = args.margin_s
self.cos_m = math.cos(self.m)
self.sin_m = math.sin(self.m)
self.th = math.cos(math.pi - self.m)
self.mm = math.sin(math.pi - self.m) * self.m
def forward(self, input, label):
x = F.normalize(input)
W = F.normalize(self.weight)
cosine = F.linear(x, W)
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device=device)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
if __name__ == "__main__":
from torchscope import scope
model = MobileFaceNet()
# print(model)
scope(model, input_size=(3, 112, 112))