-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextratrees_objective_factory.py
191 lines (165 loc) · 6.18 KB
/
extratrees_objective_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from typing import Union, Sequence, Any, Optional, Tuple, List
import numpy as np
import pandas as pd
from darts import TimeSeries
from darts.metrics import mae
from darts.models import RegressionModel
from darts.models.forecasting.forecasting_model import GlobalForecastingModel
from optuna import Trial
from sklearn.compose import TransformedTargetRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from src.aggregation.objective_factories.objective_factory import ObjectiveFactory
# log_10(x+1)
def log10p(x):
return np.log10(1 + x)
# 10^x - 1
def exp10p(x):
return 10**x - 1
class ExtraTreesObjectiveFactory(ObjectiveFactory):
def create(
self,
series: Union[TimeSeries, Sequence[TimeSeries]],
covariates: Union[TimeSeries, Sequence[TimeSeries]],
validation_series: Union[TimeSeries, Sequence[TimeSeries]],
validation_covariates: Union[TimeSeries, Sequence[TimeSeries]],
):
predict_covariates = [
past_covariate.append(validation_past_covariate)
for past_covariate, validation_past_covariate in zip(
covariates, validation_covariates
)
]
def objective(trial: Trial):
params = {
"n_estimators": trial.suggest_int("n_estimators", 10, 100),
"max_depth": trial.suggest_int("max_depth", 1, 10),
}
model = RegressionModel(
lags_future_covariates=(14, 1),
model=TransformedTargetRegressor(
regressor=ExtraTreesRegressor(random_state=42, **params),
func=log10p,
inverse_func=exp10p,
),
)
model.fit(
series=series,
future_covariates=covariates,
)
preds = model.predict(
n=7,
series=series,
future_covariates=predict_covariates,
)
scores = mae(validation_series, preds, n_jobs=-1, verbose=True)
score_val = np.mean(scores)
return score_val if score_val != np.nan else float("inf")
return objective
def build_model(self, params: dict[str, Any], **kwargs) -> GlobalForecastingModel:
return RegressionModel(
lags_future_covariates=(14, 1),
model=TransformedTargetRegressor(
regressor=ExtraTreesRegressor(**params),
func=log10p,
inverse_func=exp10p,
),
)
def name(self) -> str:
return "ExtraTreesRegressor"
class GlobalRetrainingClusterModel(GlobalForecastingModel):
def __init__(self, model: Pipeline):
super().__init__()
self.model = model
def fit(
self,
series: Union[TimeSeries, Sequence[TimeSeries]],
past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
) -> "GlobalForecastingModel":
# Check if the series is a sequence of TimeSeries
if isinstance(series, Sequence):
y_train = pd.concat([s.pd_dataframe() for s in series])
else:
y_train = series.pd_dataframe()
if past_covariates is not None:
raise NotImplementedError(
"Past covariates are not supported for this model"
)
# Check if the covariates is a sequence of TimeSeries
if isinstance(future_covariates, Sequence):
x_train = pd.concat([s.pd_dataframe() for s in future_covariates])
else:
x_train = future_covariates.pd_dataframe()
# We then fit the StandardScaler on the whole training set
sc = StandardScaler()
sc.fit(x_train)
X_train_scaled = sc.transform(x_train)
self.model.fit(X_train_scaled, y_train)
return self
def predict(
self,
n: int,
series: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
num_samples: int = 1,
verbose: bool = False,
) -> Union[TimeSeries, Sequence[TimeSeries]]:
# Check if the covariates is a sequence of TimeSeries
if isinstance(future_covariates, Sequence) and isinstance(series, Sequence):
return [
self._predict_single(n, s, None, c)
for s, c in zip(series, future_covariates)
]
return self._predict_single(n, series, past_covariates, future_covariates)
def _predict_single(
self,
n: int,
series: Optional[TimeSeries] = None,
past_covariates: Optional[TimeSeries] = None,
future_covariates: Optional[TimeSeries] = None,
) -> TimeSeries:
if past_covariates is not None:
raise NotImplementedError(
"Past covariates are not supported for this model"
)
# Check if the series is a sequence of TimeSeries
if isinstance(series, TimeSeries):
y_pred = self.model.predict(future_covariates.pd_dataframe())
return TimeSeries.from_dataframe(
pd.DataFrame(
y_pred,
index=[series.end_time() + i * series.freq() for i in range(n)],
columns=[series.components[0]],
)
)
else:
raise NotImplementedError(
"This model does not support multiple time series"
)
@property
def extreme_lags(
self,
) -> Tuple[
Optional[int],
Optional[int],
Optional[int],
Optional[int],
Optional[int],
Optional[int],
]:
return None, None, None, None, None, None
@property
def _model_encoder_settings(
self,
) -> Tuple[
Optional[int],
Optional[int],
bool,
bool,
Optional[List[int]],
Optional[List[int]],
]:
return None, None, False, False, None, None