forked from spMohanty/tortilla
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtortilla-train.py
298 lines (254 loc) · 10.7 KB
/
tortilla-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python
from config import Config as config
from data_loaders import TortillaDataset
from trainer import TortillaTrainer
from models import TortillaModel
import torch
import torch.nn as nn
import torch.optim as optim
# from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, models, transforms
from torch.nn import CrossEntropyLoss
from monitor import TortillaMonitor
import utils
import os, shutil
import pickle
import tqdm
tqdm.monitor_interval = 0
import argparse
def main(config):
if config.use_cpu:
use_gpu = False
else:
use_gpu = torch.cuda.is_available()
utils.create_directory_structure(config.experiment_dir_name, resume=config.resume)
"""
Initialize Dataset
"""
print("wrs : {}".format(config.wrs))
dataset = TortillaDataset( config.dataset_dir,
batch_size=config.batch_size,
num_cpu_workers=config.num_cpu_workers,
no_data_augmentation=config.no_data_augmentation,
debug=config.debug,
wrs = config.wrs
)
"""
Initialize Model
"""
model = TortillaModel(config.model, dataset.classes,config.input_size,config.batch_size)
net = model.net
# Make net use parallel gpu
if use_gpu:
net = nn.DataParallel(net).cuda()
dataset.weights = dataset.weights.cuda()
"""
Initialize Optimizers, Loss, Loss Schedulers
"""
optimizer_ft = optim.Adam(net.parameters(), lr=config.learning_rate)
if config.wloss ==True:
print("Weighted loss")
criterion = CrossEntropyLoss(weight = 1./dataset.weights)
else:
print("loss not weighed")
criterion = CrossEntropyLoss()
monitor = TortillaMonitor( experiment_name=config.experiment_name,
topk=config.topk,
dataset=dataset,
classes=dataset.classes,
use_gpu = use_gpu,
plot=True,
config=config
)
def _load_checkpoint(net, optimizer, checkpoint_path=False):
if checkpoint_path:
path = checkpoint_path
else:
path = config.experiment_dir_name+"/checkpoints/snapshot_latest.net"
checkpoint = torch.load(path)
start_epoch = checkpoint["epoch"]
net.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
return start_epoch
def _save_checkpoint(net, optimizer, epoch):
path = config.experiment_dir_name+"/checkpoints/snapshot_{}_{}.net".format(epoch, monitor.val_loss.get_last())
latest_snapshot_path = config.experiment_dir_name+"/checkpoints/snapshot_latest.net"
print("Checkpointing model at : ", path)
torch.save({
"epoch": epoch,
"model_state_dict": net.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"config": config,
"model": config.model,
"exp_dir_name":config.experiment_dir_name,
"val_loss": monitor.val_loss.get_last(),
"classes": dataset.classes,
"transforms":dataset.data_transforms['val'],
"use_cpu":config.use_cpu
}, path)
shutil.copy2(path, latest_snapshot_path)
if epoch == config.epochs-2 :
model_path = config.experiment_dir_name+"/trained_model.net"
shutil.copy2(latest_snapshot_path, model_path)
if config.resume:
start_epoch = _load_checkpoint(net, optimizer_ft)
else:
start_epoch = 0
lr_milestones = [int(1.0*config.epochs/3), int(2.0*config.epochs/3)]
print("LR_Milestones : ", lr_milestones)
exp_lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer_ft, milestones=lr_milestones, gamma=0.1, last_epoch=start_epoch-1)
"""
Train
"""
trainer = TortillaTrainer(
dataset = dataset,
model = net,
loss = criterion,
optimizer = optimizer_ft,
monitor = monitor,
config=config,
start_epoch=start_epoch
)
def _run_one_epoch(epoch, train=True):
print("\n" + "+"*80)
pbar = tqdm.tqdm(total=100)
pbar.set_description("Epoch : {} ; {}".format(epoch, "Training" if train else "Validation"))
end_of_epoch = False
last_percentage = 0
while not end_of_epoch:
_loss, images, labels, \
outputs, percent_complete, \
end_of_epoch = trainer._step(use_gpu=use_gpu, train=train)
pbar.update(percent_complete*100 - last_percentage)
last_percentage = percent_complete*100
if end_of_epoch:
break
pbar.close()
if train:
exp_lr_scheduler.step()
for epoch in range(start_epoch, config.epochs):
for train in [False, True]:
_run_one_epoch(epoch, train=train)
if epoch%int(config.checkpoint_frequency) == 0:
_save_checkpoint(net, optimizer_ft, epoch)
_run_one_epoch(epoch, train=False)
#utils.save_to_csv(config, config.experiment_dir_name)
print("You can find your final model at : ",config.experiment_dir_name+"/trained_model.net")
print("Hurray !! Your network is trained ! Now you can use `tortilla-predict` to make predictions.")
def collect_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--experiment-name', action='store', dest='experiment_name',
required=True,
help='A unique name for the current experiment')
parser.add_argument('--experiments-dir', action='store', dest='experiments_dir',
default=config.experiments_dir,
help='Directory where results of all experiments will be stored.')
parser.add_argument('--dataset-dir', action='store', dest='dataset_dir',
required=True,
help='Dataset directory in the TortillaDataset format')
parser.add_argument('--model', action='store', dest='model',
default=config.model,
help='Type of the pretrained network to train with. Options : {}'.format(TortillaModel.supported_models))
parser.add_argument('--optimizer', action='store', dest='optimizer',
default=config.optimizer,
help='Type of the pretrained network to train with. Options : ["adam"]')
parser.add_argument('--batch-size', action='store', dest='batch_size',
default=config.batch_size,
help='Batch Size.')
parser.add_argument('--epochs', action='store', dest='epochs',
default=config.epochs,
help='Number of epochs.')
parser.add_argument('--learning-rate', action='store', dest='learning_rate',
default=config.learning_rate,
help='Learning Rate.')
parser.add_argument('--top-k', action='store', dest='top_k',
default=",".join([str(x) for x in config.topk]),
help='List of values to compute top-k accuracies during \
train and val.')
parser.add_argument('--num-cpu-workers', action='store', dest='num_cpu_workers',
default=config.num_cpu_workers,
help='Number of CPU workers to be used by data loaders.')
parser.add_argument('--visdom-server', action='store', dest='visdom_server',
default=config.visdom_server,
help='Visdom server hostname.')
parser.add_argument('--visdom-port', action='store', dest='visdom_port',
default=config.visdom_port,
help='Visdom server port.')
parser.add_argument('--plot-platform', action='store', dest='plot_platform',
default=config.plot_platform,
help='Type of visualization platform. Options:["tensorboard", "visdom", "none"]')
parser.add_argument('--no-plots', action='store_true', default=config.no_plots,
dest='no_plots',
help='Disable plotting on the visdom server')
parser.add_argument('--no-render-images', action='store_true', default=config.no_render_images,
dest='no_render_images',
help='Disable rendering of images on the visdom server')
parser.add_argument('--use-cpu', action='store_true', default=config.use_cpu,
dest='use_cpu',
help='Boolean Flag to forcibly use CPU (on servers which\
have GPUs. If you do not have a GPU, tortilla will \
automatically use just CPU)')
parser.add_argument('--data-transforms', action='store', dest='data_transforms',
default=config.data_transforms,
help='Dict of data transformations to apply on training and validation')
parser.add_argument('--resume', action='store_true', default=config.resume,
dest='resume',
help='Resume training from the latest checkpoint?')
parser.add_argument('--debug', action='store_true', default=config.debug,
dest='debug',
help='Run tortilla in debug mode')
parser.add_argument('--version', action='version', version='tortilla '+str(config.version))
parser.add_argument('--no-data-augmentation', action='store_true', default=config.no_data_augmentation,
dest='no_data_augmentation',
help='Boolean Flag to deactivate data augmentation')
parser.add_argument('--wrs',action='store_true',default=config.wrs,
dest='wrs',
help='Flag to apply Weighted Random Sampler')
parser.add_argument('--wloss',action ='store_true',default=config.wloss,
dest='wloss',
help='Flag to apply Weighted Loss Function')
parser.add_argument('--checkpoint-frequency',action='store',default=config.checkpoint_frequency,
dest='checkpoint_frequency',
help='Checkpoint frequency')
parser.add_argument('--normalize-params', nargs ='*',default=config.normalize_params,dest='normalize_params')
#
#
args = parser.parse_args()
config.experiment_name = args.experiment_name
config.experiments_dir = args.experiments_dir
config.experiment_dir_name = config.experiments_dir+"/"+config.experiment_name
config.model = args.model
config.optimizer = args.optimizer
config.dataset_dir = args.dataset_dir
config.batch_size = int(args.batch_size)
config.epochs = int(args.epochs)
config.learning_rate = float(args.learning_rate)
config.topk = [int(x) for x in args.top_k.split(",")]
config.num_cpu_workers = int(args.num_cpu_workers)
config.visdom_server = args.visdom_server
config.visdom_port = int(args.visdom_port)
config.debug = args.debug
config.no_plots = args.no_plots
config.no_render_images = args.no_render_images
config.use_cpu = args.use_cpu
config.resume = args.resume
config.no_data_augmentation = args.no_data_augmentation
config.data_transforms = args.data_transforms
config.plot_platform = args.plot_platform
if config.plot_platform == 'none':
config.no_plots=True
config.no_render_images=True
config.wrs = args.wrs
config.wloss = args.wloss
config.checkpoint_frequency = args.checkpoint_frequency
config.input_size = 299 if config.model=='inception_v3' else 224
config.resize_shape = 342 if config.model=='inception_v3' else 256
config.normalize_params = args.normalize_params if len(args.normalize_params) == 6 else config.normalize_params
if config.batch_size%32 != 0:
config.batch_size = 32 if config.batch_size < 32 else config.batch_size - (config.batch_size%32)
return config
if __name__ == "__main__":
utils.logo()
config = collect_args()
main(config)