forked from paul-o-alto/keras-resnet-sdc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
139 lines (110 loc) · 4.13 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
The code in here is based on Vivek Yadav's Medium article entitled:
'An augmentation based deep neural network approach to learn human driving behavior'
"""
import cv2
import numpy as np
import os.path
import math
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
rows = 160
cols = 320
pr_threshold = 0.05
def augment_brightness_camera_images(image):
image1 = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
random_bright = .25 + np.random.uniform()
#print(random_bright)
image1[:,:,2] = image1[:,:,2]*random_bright
image1 = cv2.cvtColor(image1, cv2.COLOR_HSV2RGB)
return image1
def trans_image(image, steer, trans_range):
# Translation
tr_x = trans_range*np.random.uniform() - trans_range/2
steer_ang = steer + tr_x/trans_range*2*.2
tr_y = 40*np.random.uniform() - 40/2
Trans_M = np.float32([[1,0,tr_x], [0, 1,tr_y]])
image_tr = cv2.warpAffine(image, Trans_M, (cols,rows))
return image_tr, steer_ang, tr_x
def add_random_shadow(image):
top_y = 320*np.random.uniform()
top_x = 0
bot_x = 160
bot_y = 320*np.random.uniform()
image_hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
shadow_mask = 0*image_hls[:,:,1]
X_m = np.mgrid[0:image.shape[0], 0:image.shape[1]][0]
Y_m = np.mgrid[0:image.shape[0], 0:image.shape[1]][1]
shadow_mask[((X_m-top_x)*(bot_y-top_y) - (bot_x-top_x)*(Y_m-top_y) >= 0)] = 1
#random_bright = .25 + .7*np.random.uniform()
if np.random.randint(2) == 1:
random_bright = .5
cond1 = shadow_mask == 1
cond2 = shadow_mask == 0
if np.randomint(2) == 1:
image_hls[:,:,1][cond1] = image_hls[:,:,1][cond1]*random_bright
else:
image_hls[:,:,1][cond0] = image_hls[:,:,1][cond0]*random_bright
image = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB)
return image
new_size_col, new_size_row = 64, 64
def preprocessImage(image):
shape = image.shape
# note: numpy arrays are (row, col)
image = image[math.floor(shape[0]/5):shape[0]-25, 0:shape[1]]
image = cv2.resize(image, (new_size_col, new_size_row), interpolation=cv2.INTER_AREA)
#image = image/255. -.5
return image
def preprocess_image_file_train(line_data):
#print(line_data)
i_lrc = np.random.randint(3)
if i_lrc == 0:
path_file = line_data[1].strip() #1 = 'left'
shift_ang = .25
if i_lrc == 1:
path_file = line_data[0].strip() #0 = 'center'
shift_ang = 0
if i_lrc == 2:
path_file = line_data[2].strip() #2 = 'right'
shift_ang = -.25
y_steer = float(line_data[3]) + shift_ang # 3 = 'steering'
image = cv2.imread(os.path.join('./test_data', path_file), 1)
#plt.imshow(image)
#plt.show()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image, y_steer, tr_x = trans_image(image, y_steer, 100)
image = augment_brightness_camera_images(image)
image = preprocessImage(image)
image = np.array(image)
ind_flip = np.random.randint(2)
#plt.imshow(image)
#plt.show()
if ind_flip == 0:
image = cv2.flip(image, 1)
y_steer = -y_steer
return image, y_steer
def generate_train_from_PD_batch(data, batch_size = 32):
batch_images = np.zeros((batch_size, new_size_row, new_size_col, 3))
batch_steering = np.zeros(batch_size)
while 1:
for i_batch in range(batch_size):
i_line = np.random.randint(len(data))
line_data = data[i_line]
line_data = line_data.split(", ")
if len(line_data) != 7: continue
keep_pr = 0
#x, y = preprocess_image_file_train(line_data)
while keep_pr == 0:
x,y = preprocess_image_file_train(line_data)
pr_unif = np.random
if abs(y) < .1:
pr_val = np.random.uniform()
if pr_val > pr_threshold:
keep_pr = 1
else:
keep_pr = 1
#x = x.reshape(1, x.shape[0], x.shape[1], x.shape[2])
#y = np.array([[y]])
batch_images[i_batch] = x
batch_steering[i_batch] = y
yield batch_images, batch_steering