forked from DefangChen/OKDDip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DML.py
401 lines (328 loc) · 17.8 KB
/
train_DML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
'''
This is PyTorch 1.0 implementation of Deep Mutual Learning on CIFAR-10/100 and ImageNet.
'''
import argparse
import logging
import os
import random
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
from tqdm import tqdm
import utils
import models
import models.data_loader as data_loader
from tensorboardX import SummaryWriter
# Fix the random seed for reproducible experiments
# random.seed(97)
# torch.manual_seed(97)
# if torch.cuda.is_available(): torch.cuda.manual_seed(97)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# Set parameters
parser = argparse.ArgumentParser()
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser.add_argument('--model', metavar='ARCH', default='resnet32', type=str,
choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet32)')
parser.add_argument('--dataset', default='CIFAR10', type=str, help = 'Input the name of dataset: default(CIFAR10)')
parser.add_argument('--num_epochs', default=300, type=int, help = 'Input the number of epoches: default(300)')
parser.add_argument('--batch_size', default=128, type=int, help = 'Input the batch size: default(128)')
parser.add_argument('--lr', default=0.1, type=float, help = 'Input the learning rate: default(0.1)')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 225],
help='Decrease learning rate at these epochs.')
parser.add_argument('--efficient', action='store_true', help = 'Decide whether or not to use efficient implementation: default(False)')
parser.add_argument('--wd', default=5e-4, type=float, help = 'Input the weight decay rate: default(5e-4)')
parser.add_argument('--dropout', default=0., type=float, help = 'Input the dropout rate: default(0.0)')
parser.add_argument('--resume', default='', type=str, help = 'Input the path of resume model: default('')')
parser.add_argument('--version', default='V0', type=str, help = 'Input the version of current model: default(V0)')
parser.add_argument('--num_workers', default=8, type=int, help = 'Input the number of works: default(8)')
parser.add_argument('--gpu_id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--num_branches', default=4, type=int, help = 'Input the number of branches: default(4)')
parser.add_argument('--loss', default='KL', type=str, help = 'Define the loss between student output and group output: default(KL_Loss)')
parser.add_argument('--temperature', default=3.0, type=float, help = 'Input the temperature: default(3.0)')
parser.add_argument('--type', action='store_true', help = 'Decide whether or not to use avg-loss: default(False)')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
print(args)
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(train_loader, model, optimizer, criterion, criterion_T, accuracy, args):
# set model to training mode
model.train()
# set running average object for loss and accuracy
accTop1_avg = list(range(args.num_branches + 1))
accTop5_avg = list(range(args.num_branches + 1))
for i in range(args.num_branches + 1):
accTop1_avg[i] = utils.RunningAverage()
accTop5_avg[i] = utils.RunningAverage()
# loss_true_avg = utils.RunningAverage()
# loss_group_avg = utils.RunningAverage()
loss_avg = utils.RunningAverage()
end = time.time()
# Use tqdm for progress bar
with tqdm(total=len(train_loader)) as t:
for i, (train_batch, labels_batch) in enumerate(train_loader):
train_batch = train_batch.cuda(non_blocking=True)
labels_batch = labels_batch.cuda(non_blocking=True)
# compute model output and loss
output_batch = model(train_batch) # Batch X classes X num_branches
loss = criterion(output_batch[:,:,0], labels_batch)
for kk in range(1, args.num_branches):
loss += criterion(output_batch[:,:,kk], labels_batch)
# pair-wise loss
if args.type:
for j in range(args.num_branches):
for k in range(args.num_branches):
if k != j:
loss += 1/(args.num_branches-1)*criterion_T(output_batch[:,:,j], output_batch[:,:,k])
# ensemble first
else:
for j in range(args.num_branches):
en_output = 0
for k in range(args.num_branches):
if k != j:
en_output += output_batch[:,:,k]
loss += criterion_T(output_batch[:,:,j], en_output/(args.num_branches-1))
# loss_true_avg.update(loss_true.item())
# loss_group_avg.update(loss_group.item())
loss_avg.update(loss.item())
# Update average loss and accuracy
for i in range(args.num_branches):
metrics = accuracy(output_batch[:,:,i], labels_batch, topk=(1,5))
accTop1_avg[i].update(metrics[0].item())
accTop5_avg[i].update(metrics[1].item())
e_metrics = accuracy(torch.mean(output_batch, dim=2), labels_batch, topk=(1,5)) # need to test after softmax
accTop1_avg[args.num_branches].update(e_metrics[0].item())
accTop5_avg[args.num_branches].update(e_metrics[1].item())
# clear previous gradients, compute gradients of all variables wrt loss
optimizer.zero_grad()
loss.backward()
# performs updates using calculated gradients
optimizer.step()
t.update()
mean_train_accTop1 = 0
mean_train_accTop5 = 0
for i in range(args.num_branches):
mean_train_accTop1 += accTop1_avg[i].value()
mean_train_accTop5 += accTop5_avg[i].value()
mean_train_accTop1 /= (args.num_branches)
mean_train_accTop5 /= (args.num_branches)
# compute mean of all metrics in summary
train_metrics = {'train_loss': loss_avg.value(),
# 'train_true_loss': loss_true_avg.value(),
# 'train_group_loss': loss_group_avg.value(),
'mean_train_accTop1': mean_train_accTop1,
'mean_train_accTop5': mean_train_accTop1,
'train_accTop1': accTop1_avg[args.num_branches].value(),
'train_accTop5': accTop5_avg[args.num_branches].value(),
'time': time.time() - end}
for i in range(args.num_branches):
train_metrics.update({'stu'+str(i)+'train_accTop1' : accTop1_avg[i].value()})
train_metrics.update({'stu'+str(i)+'train_accTop5' : accTop5_avg[i].value()})
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in train_metrics.items())
logging.info("- Train metrics: " + metrics_string)
return train_metrics
def evaluate(test_loader, model, criterion, criterion_T, accuracy, args):
# set model to evaluation mode
model.eval()
# set running average object for loss
accTop1_avg = list(range(args.num_branches + 1))
accTop5_avg = list(range(args.num_branches + 1))
for i in range(args.num_branches + 1):
accTop1_avg[i] = utils.RunningAverage()
accTop5_avg[i] = utils.RunningAverage()
# loss_true_avg = utils.RunningAverage()
# loss_group_avg = utils.RunningAverage()
loss_avg = utils.RunningAverage()
end = time.time()
with torch.no_grad():
for _, (test_batch, labels_batch) in enumerate(test_loader):
test_batch = test_batch.cuda(non_blocking=True)
labels_batch = labels_batch.cuda(non_blocking=True)
# compute model output and loss
output_batch = model(test_batch) # Batch X classes X num_branches
loss = criterion(output_batch[:,:,0], labels_batch)
for kk in range(1, args.num_branches):
loss += criterion(output_batch[:,:,kk], labels_batch)
# pair-wise loss
if args.type:
for j in range(args.num_branches):
for k in range(args.num_branches):
if k != j:
loss += 1/(args.num_branches-1)*criterion_T(output_batch[:,:,j], output_batch[:,:,k])
# ensemble first
else:
for j in range(args.num_branches):
en_output = 0
for k in range(args.num_branches):
if k != j:
en_output += output_batch[:,:,k]
loss += criterion_T(output_batch[:,:,j], en_output/(args.num_branches-1))
# loss_true_avg.update(loss_true.item())
# loss_group_avg.update(loss_group.item())
loss_avg.update(loss.item())
# Update average loss and accuracy
for i in range(args.num_branches):
metrics = accuracy(output_batch[:,:,i], labels_batch, topk=(1,5))
accTop1_avg[i].update(metrics[0].item())
accTop5_avg[i].update(metrics[1].item())
e_metrics = accuracy(torch.mean(output_batch, dim=2), labels_batch, topk=(1,5))
accTop1_avg[args.num_branches].update(e_metrics[0].item())
accTop5_avg[args.num_branches].update(e_metrics[1].item())
mean_test_accTop1 = 0
mean_test_accTop5 = 0
for i in range(args.num_branches):
mean_test_accTop1 += accTop1_avg[i].value()
mean_test_accTop5 += accTop5_avg[i].value()
mean_test_accTop1 /= (args.num_branches)
mean_test_accTop5 /= (args.num_branches)
# compute mean of all metrics in summary
test_metrics = { 'test_loss': loss_avg.value(),
# 'test_true_loss': loss_true_avg.value(),
# 'test_group_loss': loss_group_avg.value(),
'mean_test_accTop1': mean_test_accTop1,
'mean_test_accTop5': mean_test_accTop5,
'test_accTop1': accTop1_avg[args.num_branches].value(),
'test_accTop5': accTop5_avg[args.num_branches].value(),
'time': time.time() - end}
for i in range(args.num_branches - 1):
test_metrics.update({'stu'+str(i)+'test_accTop1' : accTop1_avg[i].value()})
test_metrics.update({'stu'+str(i)+'test_accTop5' : accTop5_avg[i].value()})
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in test_metrics.items())
logging.info("- Test metrics: " + metrics_string)
return test_metrics
def train_and_evaluate(model, train_loader, test_loader, optimizer, criterion, criterion_T, accuracy, model_dir, args):
start_epoch = 0
best_acc = 0.
# learning rate schedulers for different models:
scheduler = MultiStepLR(optimizer, milestones=args.schedule, gamma=0.1)
# TensorboardX setup
writer = SummaryWriter(log_dir = model_dir) # ensemble
# writerB = SummaryWriter(logdir = os.path.join(model_dir, 'B')) # ensemble
# Save best ensemble or average accTop1
choose_E = False
# Save the parameters for export
result_train_metrics = list(range(args.num_epochs))
result_test_metrics = list(range(args.num_epochs))
# If the training is interruptted
if args.resume:
# Load checkpoint.
logging.info('Resuming from checkpoint..')
resumePath = os.path.join(args.resume, 'last.pth')
assert os.path.isfile(resumePath), 'Error: no checkpoint directory found!'
checkpoint = torch.load(resumePath)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optim_dict'])
# resume from the last epoch
start_epoch = checkpoint['epoch']
scheduler.step(start_epoch - 1)
if choose_E:
best_acc = checkpoint['test_accTop1']
else:
best_acc = checkpoint['mean_test_accTop1']
result_train_metrics = torch.load(os.path.join(args.resume, 'train_metrics'))
result_test_metrics = torch.load(os.path.join(args.resume, 'test_metrics'))
for epoch in range(start_epoch, args.num_epochs):
scheduler.step()
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, args.num_epochs))
# compute number of batches in one epoch (one full pass over the training set)
train_metrics = train(train_loader, model, optimizer, criterion, criterion_T, accuracy, args)
writer.add_scalar('Train/Loss', train_metrics['train_loss'], epoch+1)
# writer.add_scalar('Train/Loss_True', train_metrics['train_true_loss'], epoch+1)
# writer.add_scalar('Train/Loss_Group', train_metrics['train_group_loss'], epoch+1)
writer.add_scalar('Train/AccTop1', train_metrics['train_accTop1'], epoch+1)
# Evaluate for one epoch on validation set
test_metrics = evaluate(test_loader, model, criterion, criterion_T, accuracy, args)
# Find the best accTop1 for Branch1.
if choose_E:
test_acc = test_metrics['test_accTop1']
else:
test_acc = test_metrics['mean_test_accTop1']
writer.add_scalar('Test/Loss', test_metrics['test_loss'], epoch+1)
# writer.add_scalar('Test/Loss_True', test_metrics['test_true_loss'], epoch+1)
# writer.add_scalar('Test/Loss_Group', test_metrics['test_group_loss'], epoch+1)
writer.add_scalar('Test/AccTop1', test_metrics['test_accTop1'], epoch+1)
result_train_metrics[epoch] = train_metrics
result_test_metrics[epoch] = test_metrics
# Save latest train/test metrics
torch.save(result_train_metrics, os.path.join(model_dir, 'train_metrics'))
torch.save(result_test_metrics, os.path.join(model_dir, 'test_metrics'))
last_path = os.path.join(model_dir, 'last.pth')
# Save latest model weights, optimizer and accuracy
torch.save({ 'state_dict': model.state_dict(),
'epoch': epoch + 1,
'optim_dict': optimizer.state_dict(),
'test_accTop1': test_metrics['test_accTop1'],
'mean_test_accTop1': test_metrics['mean_test_accTop1']}, last_path)
# If best_eval, best_save_path
is_best = test_acc >= best_acc
if is_best:
logging.info("- Found better accuracy")
best_acc = test_acc
# Save best metrics in a json file in the model directory
test_metrics['epoch'] = epoch + 1
utils.save_dict_to_json(test_metrics, os.path.join(model_dir, "test_best_metrics.json"))
# Save model and optimizer
shutil.copyfile(last_path, os.path.join(model_dir, 'best.pth'))
writer.close()
if __name__ == '__main__':
begin_time = time.time()
# Set the model directory
model_dir= os.path.join('.', args.dataset, str(args.num_epochs), 'DML', args.model + 'B' + str(args.num_branches) + 'T' + str(args.temperature) + 'S' + str(args.loss) + args.version)
if not os.path.exists(model_dir):
print("Directory does not exist! Making directory {}".format(model_dir))
os.makedirs(model_dir)
# Set the logger
utils.set_logger(os.path.join(model_dir, 'train.log'))
# Create the input data pipeline
logging.info("Loading the datasets...")
# set number of classes
if args.dataset == 'CIFAR10':
num_classes = 10
model_folder = "model_cifar"
root='./Data'
elif args.dataset == 'CIFAR100':
num_classes = 100
model_folder = "model_cifar"
root='./Data'
elif args.dataset == 'imagenet':
num_classes = 1000
model_folder = "model_imagenet"
root = './Data'
# Load data
train_loader, test_loader = data_loader.dataloader(data_name = args.dataset, batch_size = args.batch_size, num_workers = args.num_workers, root=root)
logging.info("- Done.")
# Training from scratch
model_fd = getattr(models, model_folder)
model_cfg = getattr(model_fd, 'DML')
model = getattr(model_cfg, 'MutualNet')(model = args.model, num_branches = args.num_branches, num_classes = num_classes, dropout = args.dropout)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model, device_ids=[0,1,2,3]).to(device)
else:
model = model.to(device)
num_params = (sum(p.numel() for p in model.parameters())/1000000.0)
logging.info('Total params: %.2fM' % num_params)
# Loss and optimizer(SGD with 0.9 momentum)
criterion = nn.CrossEntropyLoss()
if args.loss == "KL":
criterion_T = utils.KL_Loss(args.temperature).to(device)
elif args.loss == "CE":
criterion_T = utils.CE_Loss(args.temperature).to(device)
accuracy = utils.accuracy
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True, weight_decay = args.wd)
# Train the model
logging.info("Starting training for {} epoch(s)".format(args.num_epochs))
train_and_evaluate(model, train_loader, test_loader, optimizer, criterion, criterion_T, accuracy, model_dir, args)
logging.info('Total time: {:.2f} hours'.format((time.time() - begin_time)/3600.0))
state['Total params'] = num_params
params_json_path = os.path.join(model_dir, "parameters.json") # save parameters
utils.save_dict_to_json(state, params_json_path)