-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcspOptimizer.py
executable file
·561 lines (409 loc) · 17.8 KB
/
cspOptimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import itertools
import sys
from cspConsistency import *
from cspProblem import *
from searchGeneric import *
from searchProblem import *
# List of valid days and times
days_list = ["mon", "tue", "wed", "thu", "fri"]
time_list = ["9am", "10am", "11am", "12pm", "1pm", "2pm", "3pm", "4pm"]
# Map days and times to numerical values ranging
# from [0-4] days and [0-7] for times
days_dict = dict(zip(days_list, range(len(days_list))))
time_dict = dict(zip(time_list, range(len(time_list))))
# Create a set of (day , time) tuples
day_time_domain = set(list(itertools.product(days_list, time_list)))
# //-------------------- // BINARY CONSTRAINTS // -------------------- //
def b_before(m1, m2):
if (days_dict[getDayFromString(m1)] < days_dict[getDayFromString(m2)]):
return True
elif (days_dict[getDayFromString(m1)] == days_dict[getDayFromString(m1)]):
if (time_dict[getTimeFromString(m1)] < time_dict[getTimeFromString(m2)]):
return True
else:
return False
def b_same_day(m1, m2):
if (days_dict[getDayFromString(m1)] == days_dict[getDayFromString(m2)]):
return True
else:
return False
def b_one_day_between(m1, m2):
if (abs(days_dict[getDayFromString(m1)] - days_dict[getDayFromString(m2)]) == 2):
return True
else:
return False
def b_one_hour_between(m1, m2):
m1_time = getTimeFromString(m1)
m2_time = getTimeFromString(m2)
if (abs(time_dict[m1_time] - time_dict[m2_time]) == 2):
return True
else:
return False
# Dict mapping of binary constraints to their corresponding functions
b_constraints = {
"before": b_before,
"same-day": b_same_day,
"one-day-between": b_one_day_between,
"one-hour-between": b_one_hour_between
}
# //-------------------- // ---------------- // -------------------- //
# //-------------------- // HARD CONSTRAINTS // -------------------- //
def h_day(day):
def day_equal(d):
return getDayFromString(d) == day
return day_equal
def h_time(time):
def time_equal(t):
return getTimeFromString(t) == time
return time_equal
def h_range(s1, s2):
s1_day = getDayFromString(s1)
s1_time = time_dict[getTimeFromString(s1)]
s1_day_index = days_dict[getDayFromString(s1)]
s2_day = getDayFromString(s2)
s2_time = time_dict[getTimeFromString(s2)]
s2_day_index = days_dict[getDayFromString(s2)]
def day_range(r):
r_day = getDayFromString(r)
r_time = time_dict[getTimeFromString(r)]
r_day_index = days_dict[getDayFromString(r)]
# If the day is either the start day or the end day, it automatically
# satisfies the day range, then we check to see if the time range
# is satisfied
if (s1_day_index > s2_day_index):
return False
if (r_day == s1_day):
if (r_time >= s1_time):
return True
else:
return False
elif (r_day == s2_day):
if (r_time <= s2_time):
return True
else:
return False
# If the day is in between the date range,
# the criteria is satisfied
elif (r_day_index >= s1_day_index and r_day_index <= s2_day_index):
return True
else:
return False
return day_range
def h_morning():
def morning(t):
return time_dict[getTimeFromString(t)] <= time_dict['11am']
return morning
def h_afternoon():
def afternoon(t):
return time_dict[getTimeFromString(t)] >= time_dict['12pm']
return afternoon
def h_before_day(day):
def before_day(d):
if (days_dict[getDayFromString(d)] < days_dict[getDayFromString(day)]):
return True
else:
return False
return before_day
def h_before_time(time):
def before_time(t):
if (time_dict[getTimeFromString(t)] < time_dict[getTimeFromString(time)]):
return True
else:
return False
return before_time
def h_before_day_time(s):
def before_day_time(dt):
if (days_dict[getDayFromString(dt)] < days_dict[getDayFromString(s)]):
if (time_dict[getTimeFromString(dt)] < time_dict[getTimeFromString(s)]):
return True
else:
return False
else:
return False
return before_day_time
def h_after_day(day):
def after_day(d):
if (days_dict[getDayFromString(d)] > days_dict[getDayFromString(day)]):
return True
else:
return False
return after_day
def h_after_time(time):
def after_time(t):
if (time_dict[getTimeFromString(t)] > time_dict[getTimeFromString(time)]):
return True
else:
return False
return after_time
def h_after_day_time(s):
def after_day_time(dt):
if (days_dict[getDayFromString(dt)] > days_dict[getDayFromString(s)]):
if (time_dict[getTimeFromString(dt)] > time_dict[getTimeFromString(s)]):
return True
else:
return False
else:
return False
return after_day_time
# Dict mapping of hard constraints to their functions
h_constriants = {
"day": h_day,
"time": h_time,
"day-range": h_range,
"morning": h_morning,
"afternoon": h_afternoon,
"before_day": h_before_day,
"before_time": h_before_time,
"after_day": h_after_day,
"after_time": h_after_time,
"before_day_time": h_before_day_time,
"after_day_time": h_after_day_time
}
# //-------------------- // ------------------- // -------------------- //
# //-------------------- // SOFT CONSTRAINTS // --------------------- //
def s_early_week():
def early_week(d):
return abs(days_dict[getDayFromString(d)] - days_dict['mon'])
return early_week
def s_late_week():
def late_week(d):
return abs(days_dict[getDayFromString(d)] - days_dict['fri'])
return late_week
def s_early_morning():
def early_morning(t):
return abs(time_dict[getTimeFromString(t)] - time_dict['9am'])
return early_morning
def s_midday():
def midday(t):
return abs(time_dict[getTimeFromString(t)] - time_dict['12pm'])
return midday
def s_late_afternoon():
def late_afternoon(t):
return abs(time_dict[getTimeFromString(t)] - time_dict['4pm'])
return late_afternoon
# Dict mapping of soft constraints to their corresponding functions
s_constraints = {
"early-week": s_early_week,
"late-week": s_late_week,
"early-morning": s_early_morning,
"midday": s_midday,
"late-afternoon": s_late_afternoon
}
def getDayFromString(variable):
return variable[0]
def getTimeFromString(variable):
return variable[1]
# //-------------------- // ------------------- // -------------------- //
class CostCSP(CSP):
def __init__(self, domains, constriants, soft_constraints):
super().__init__(domains, constraints)
self.soft_constraints = soft_constraints
self.var_to_soft_const = {var: set() for var in self.variables}
for con in soft_constraints:
for var in con.scope:
self.var_to_soft_const[var].add(con)
def cost(self, var, value):
sum = 0
for con in self.var_to_soft_const[var]:
sum += con.condition(value)
return sum
class AStarModified(Searcher):
def __init__(self, problem):
super().__init__(problem)
def initialize_frontier(self):
self.frontier = FrontierPQ()
def empty_frontier(self):
return self.frontier.empty()
def add_to_frontier(self, path):
"""add path to the frontier with the appropriate cost"""
# Removed initial
value = self.problem.heuristic(path.end())
self.frontier.add(path, value)
class Search_with_AC_from_CSP(Search_problem, Displayable):
"""A search problem with arc consistency and domain splitting
A node is a CSP """
def heuristic(self, node):
sum = 0
for var in node:
values = node[var]
min_cost = 100
try:
for x in values:
current_cost = self.cons.csp.cost(var, x)
if (current_cost < min_cost):
min_cost = current_cost
sum = sum + min_cost
except:
sum = 0
return sum
def __init__(self, csp):
self.cons = Con_solver(csp) # copy of the CSP
self.domains = self.cons.make_arc_consistent()
def start_node(self):
return self.domains
def is_goal(self, node):
"""node is a goal if all domains have 1 element"""
return all(len(node[var]) == 1 for var in node)
def neighbors(self, node):
"""returns the neighboring nodes of node.
"""
neighs = []
var = select(x for x in node if len(node[x]) > 1)
if var:
dom1, dom2 = partition_domain(node[var])
self.display(2, "Splitting", var, "into", dom1, "and", dom2)
to_do = self.cons.new_to_do(var, None)
for dom in [dom1, dom2]:
newdoms = copy_with_assign(node, var, dom)
cons_doms = self.cons.make_arc_consistent(newdoms, to_do)
if all(len(cons_doms[v]) > 0 for v in cons_doms):
# all domains are non-empty
neighs.append(Arc(node, cons_doms))
else:
self.display(2, "...", var, "in", dom, "has no solution")
return neighs
if __name__ == "__main__":
file_name = ""
try:
file_name = sys.argv[1]
except:
print("Specify input file!")
exit()
domain = {}
constraints = []
soft_constraints = []
# Open the file for reading
try:
input_file = open(file_name, "r")
except:
print("Error in opening input file!")
# Convert the text data to an array of strings
file_data = input_file.readlines()
# For every line in the array , strip the '\n' character.
for line in file_data:
formatted_line = line.strip('\n')
# If any lines in the input file are
# comment lines or empty we skip them
if (formatted_line.startswith('#') or formatted_line.strip() == ''):
continue;
split_on_comma = formatted_line.split(', ')
flag = split_on_comma[0]
variable = split_on_comma[1]
if (flag == 'meeting'):
# Create shallow copy and assign it to each new variable.
# So in essence each key in the dict gets its own copy of
# the entire domain.
domain[variable] = day_time_domain.copy()
elif (flag == 'domain'):
# If the flag is 'domain', the constraint can be of 2 types: hard or soft
# We identify which type it is and depending on the arguments passed we
# decide which function to pass to the 'Constraint' object constructor
preference = split_on_comma[2]
constraint_type = split_on_comma[3]
if (constraint_type == "soft"):
# Create a Constraint object using the appropriate
# 'soft' function comparator. No further parsing required
soft_constraints.append(Constraint((variable,), s_constraints[preference]()))
elif (constraint_type == "hard"):
if (preference in time_list):
# If the only argument passed is a 'time' , it uses 'h_time()' as
# a functional argument to Constraint constructor
constraints.append(Constraint((variable,), h_constriants['time'](preference)))
elif (preference in days_list):
# If the only argument passed is a 'day' , it uses 'h_day()' as
# a functional argument to Constraint constructor
constraints.append(Constraint((variable,), h_constriants['day'](preference)))
elif ("-" in preference):
# The presence of a '-' character indicates a period of days. We extract the upper and
# lower bounds and pass each as a functional parameter to the Constraint constructor
date_times = preference.split('-')
# extract dt1 and dt2 from text file
dt1 = date_times[0]
dt2 = date_times[1]
# Grab appropriate segment of string representing
# day and time for dt1
dt1_day = dt1[0:3]
dt1_time = dt1[4:]
# Grab appropriate segment of string representing
# day and time for dt2
dt2_day = dt2[0:3]
dt2_time = dt2[4:]
# Package data into tuples to use as outer argument for function
dt1_tup = (dt1_day, dt1_time)
dt2_tup = (dt2_day, dt2_time)
# Add the Constraint object to the list of constraints
constraints.append(Constraint((variable,), h_constriants['day-range'](dt1_tup, dt2_tup)))
else:
# Otherwise , the domain constraint is a combination of various factors. We extract data
# and match to determine the appropriate 'hard' Constraint function comparator
data = preference.split()
if (len(data) == 1):
# If the argument list is of length 1, the constraints passed must be either
# 'morning' or 'afternoon'. Hence, appropriate Constraint objects are made
# using the correct function comparator
if (data[0] == 'morning'):
# (domain , <m> , morning , hard)
constraints.append(Constraint((variable,), h_constriants['morning']()))
elif (data[0] == 'afternoon'):
# (domain , <m> , afternoon , hard)
constraints.append(Constraint((variable,), h_constriants['afternoon']()))
else:
if (data[0] == "before" and len(data) == 2):
# (domain , <m> , before <day> , hard)
# Convert the data to a tuple before passing to Constriant constructor
formatted_data = (data[1],)
if (data[1] in days_list):
constraints.append(Constraint((variable,), h_constriants['before_day'](formatted_data)))
# (domain , <m> , before <time> , hard)
elif (data[1] in time_list):
# Convert the data to a tuple before passing to Constriant constructor
# (Here, the first index does not matter)
formatted_data = (data[0], data[1])
constraints.append(
Constraint((variable,), h_constriants['before_time'](formatted_data)))
elif (data[0] == "after" and len(data) == 2):
# (domain , <m> , after <day> , hard)
# Convert the data to a tuple before passing to Constriant constructor
formatted_data = (data[1],)
if (data[1] in days_list):
constraints.append(Constraint((variable,), h_constriants['after_day'](formatted_data)))
# (domain , <m> , after <time> , hard)
elif (data[1] in time_list):
# Convert the data to a tuple before passing to Constriant constructor
# (Here, the first index does not matter)
formatted_data = (data[0], data[1])
constraints.append(Constraint((variable,), h_constriants['after_time'](formatted_data)))
# (domain , <m> , before <day> <time> , hard)
elif (data[0] == "before" and len(data) == 3):
formatted_data = (data[1], data[2])
constraints.append(
Constraint((variable,), h_constriants['before_day_time'](formatted_data)))
# (domain , <m> , after <day> <time> , hard)
elif (data[0] == "after" and len(data) == 3):
formatted_data = (data[1], data[2])
constraints.append(Constraint((variable,), h_constriants['after_day_time'](formatted_data)))
elif (flag == 'constraint'):
# Splits the constraint line into the following format:
# ['variable' , 'preference' , 'variable']. This allows
# us to build a Constraint object which takes a list of
# tuples and a function pointer
lst = variable.split(' ')
constraints.append(Constraint((lst[0], lst[2]), b_constraints[lst[1]]))
# Creates a CSP problem
CSP_Node = CostCSP(domain, constraints, soft_constraints)
# Performs arc consistency and domain splitting on the given problem
# This search problem is then passed as a parameter to 'AStarModified'
# which returns a searcher for the problem
searcher = AStarModified(Search_with_AC_from_CSP(CSP_Node))
searcher.max_display_level = 0
try:
solution = searcher.search().end()
cost = searcher.problem.heuristic(solution)
for key, val in solution.items():
val_list = list(val)
day = val_list[0][0]
time = val_list[0][1]
print(key + ':' + day + ' ' + time)
print('cost:', cost, sep='')
except:
print("No solution")