-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
61 lines (52 loc) · 1.94 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras import utils
def data_preprocess(image):
"""Convert UINT images to float in range 0, 1"""
image = tf.cast(image, "float32") / 255.0
return image
def get_random_images(dataset, num_images=10):
"""Get random images from tf.data.Dataset"""
all_images = []
for batch in dataset:
images = batch.numpy()
all_images.extend(images)
if len(all_images) >= num_images:
break
# Randomly select n images
selected_idx = np.random.choice([i for i in range(len(all_images))], size=num_images, replace=False)
selected_images = [all_images[idx] for idx in selected_idx]
return np.array(selected_images)
def get_split_data(config, shuffle=True, validation_split=0.2):
"""Return train and validation split"""
# Create training dataset
train_data = utils.image_dataset_from_directory(
os.path.join(config["dataset_dir"], "img_align_celeba"),
labels=None,
color_mode="rgb",
image_size=(config["input_img_size"], config["input_img_size"]),
batch_size=config["batch_size"],
shuffle=shuffle,
seed=0,
validation_split=validation_split,
subset="training",
interpolation="bilinear",
)
# Create validation dataset
validation_data = utils.image_dataset_from_directory(
os.path.join(config["dataset_dir"], "img_align_celeba"),
labels=None,
color_mode="rgb",
image_size=(config["input_img_size"], config["input_img_size"]),
batch_size=config["batch_size"],
shuffle=shuffle,
seed=0,
validation_split=validation_split,
subset="validation",
interpolation="bilinear",
)
# Convert UINT images to float in range 0, 1
train = train_data.map(lambda x: data_preprocess(x))
validation = validation_data.map(lambda x: data_preprocess(x))
return train, validation