-
Notifications
You must be signed in to change notification settings - Fork 910
/
eval_image_retrieval.py
201 lines (179 loc) · 9.07 KB
/
eval_image_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pickle
import argparse
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import models as torchvision_models
from torchvision import transforms as pth_transforms
from PIL import Image, ImageFile
import numpy as np
import utils
import vision_transformer as vits
from eval_knn import extract_features
class OxfordParisDataset(torch.utils.data.Dataset):
def __init__(self, dir_main, dataset, split, transform=None, imsize=None):
if dataset not in ['roxford5k', 'rparis6k']:
raise ValueError('Unknown dataset: {}!'.format(dataset))
# loading imlist, qimlist, and gnd, in cfg as a dict
gnd_fname = os.path.join(dir_main, dataset, 'gnd_{}.pkl'.format(dataset))
with open(gnd_fname, 'rb') as f:
cfg = pickle.load(f)
cfg['gnd_fname'] = gnd_fname
cfg['ext'] = '.jpg'
cfg['qext'] = '.jpg'
cfg['dir_data'] = os.path.join(dir_main, dataset)
cfg['dir_images'] = os.path.join(cfg['dir_data'], 'jpg')
cfg['n'] = len(cfg['imlist'])
cfg['nq'] = len(cfg['qimlist'])
cfg['im_fname'] = config_imname
cfg['qim_fname'] = config_qimname
cfg['dataset'] = dataset
self.cfg = cfg
self.samples = cfg["qimlist"] if split == "query" else cfg["imlist"]
self.transform = transform
self.imsize = imsize
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
path = os.path.join(self.cfg["dir_images"], self.samples[index] + ".jpg")
ImageFile.LOAD_TRUNCATED_IMAGES = True
with open(path, 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
if self.imsize is not None:
img.thumbnail((self.imsize, self.imsize), Image.ANTIALIAS)
if self.transform is not None:
img = self.transform(img)
return img, index
def config_imname(cfg, i):
return os.path.join(cfg['dir_images'], cfg['imlist'][i] + cfg['ext'])
def config_qimname(cfg, i):
return os.path.join(cfg['dir_images'], cfg['qimlist'][i] + cfg['qext'])
if __name__ == '__main__':
parser = argparse.ArgumentParser('Image Retrieval on revisited Paris and Oxford')
parser.add_argument('--data_path', default='/path/to/revisited_paris_oxford/', type=str)
parser.add_argument('--dataset', default='roxford5k', type=str, choices=['roxford5k', 'rparis6k'])
parser.add_argument('--multiscale', default=False, type=utils.bool_flag)
parser.add_argument('--imsize', default=224, type=int, help='Image size')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
args = parser.parse_args()
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
# ============ preparing data ... ============
transform = pth_transforms.Compose([
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
dataset_train = OxfordParisDataset(args.data_path, args.dataset, split="train", transform=transform, imsize=args.imsize)
dataset_query = OxfordParisDataset(args.data_path, args.dataset, split="query", transform=transform, imsize=args.imsize)
sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler,
batch_size=1,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
data_loader_query = torch.utils.data.DataLoader(
dataset_query,
batch_size=1,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
print(f"train: {len(dataset_train)} imgs / query: {len(dataset_query)} imgs")
# ============ building network ... ============
if "vit" in args.arch:
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
elif "xcit" in args.arch:
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch](num_classes=0)
else:
print(f"Architecture {args.arch} non supported")
sys.exit(1)
if args.use_cuda:
model.cuda()
model.eval()
# load pretrained weights
if os.path.isfile(args.pretrained_weights):
state_dict = torch.load(args.pretrained_weights, map_location="cpu")
if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[args.checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
elif args.arch == "vit_small" and args.patch_size == 16:
print("Since no pretrained weights have been provided, we load pretrained DINO weights on Google Landmark v2.")
model.load_state_dict(torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/dino_vitsmall16_googlelandmark_pretrain/dino_vitsmall16_googlelandmark_pretrain.pth"))
else:
print("Warning: We use random weights.")
############################################################################
# Step 1: extract features
train_features = extract_features(model, data_loader_train, args.use_cuda, multiscale=args.multiscale)
query_features = extract_features(model, data_loader_query, args.use_cuda, multiscale=args.multiscale)
if utils.get_rank() == 0: # only rank 0 will work from now on
# normalize features
train_features = nn.functional.normalize(train_features, dim=1, p=2)
query_features = nn.functional.normalize(query_features, dim=1, p=2)
############################################################################
# Step 2: similarity
sim = torch.mm(train_features, query_features.T)
ranks = torch.argsort(-sim, dim=0).cpu().numpy()
############################################################################
# Step 3: evaluate
gnd = dataset_train.cfg['gnd']
# evaluate ranks
ks = [1, 5, 10]
# search for easy & hard
gnd_t = []
for i in range(len(gnd)):
g = {}
g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']])
g['junk'] = np.concatenate([gnd[i]['junk']])
gnd_t.append(g)
mapM, apsM, mprM, prsM = utils.compute_map(ranks, gnd_t, ks)
# search for hard
gnd_t = []
for i in range(len(gnd)):
g = {}
g['ok'] = np.concatenate([gnd[i]['hard']])
g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']])
gnd_t.append(g)
mapH, apsH, mprH, prsH = utils.compute_map(ranks, gnd_t, ks)
print('>> {}: mAP M: {}, H: {}'.format(args.dataset, np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2)))
print('>> {}: mP@k{} M: {}, H: {}'.format(args.dataset, np.array(ks), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2)))
dist.barrier()