-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathintegrated_gradients.py
41 lines (31 loc) · 1.47 KB
/
integrated_gradients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to compute an IntegratedGradients SaliencyMask."""
import numpy as np
from saliency import GradientSaliency
class IntegratedGradients(GradientSaliency):
"""A SaliencyMask class that implements the integrated gradients method.
https://arxiv.org/abs/1703.01365
"""
def GetMask(self, input_image, input_baseline=None, nsamples=100):
"""Returns a integrated gradients mask."""
if input_baseline == None:
input_baseline = np.zeros_like(input_image)
assert input_baseline.shape == input_image.shape
input_diff = input_image - input_baseline
total_gradients = np.zeros_like(input_image)
for alpha in np.linspace(0, 1, nsamples):
input_step = input_baseline + alpha * input_diff
total_gradients += super(IntegratedGradients, self).get_mast(input_step)
return total_gradients * input_diff