Skip to content

Commit

Permalink
feat: add dedicated benchmark
Browse files Browse the repository at this point in the history
  • Loading branch information
ex3ndr committed Jul 1, 2024
1 parent 2004db2 commit 8bc72e6
Show file tree
Hide file tree
Showing 2 changed files with 201 additions and 0 deletions.
198 changes: 198 additions & 0 deletions benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")

# Base
import itertools
from glob import glob
import textgrid
from tqdm import tqdm
import time
from contextlib import nullcontext
from pathlib import Path
import shutil
import math
import random
import random

# ML
import torch
import torch.nn.functional as F
from torch.utils.data import DistributedSampler, DataLoader
import pandas
import wandb
from einops import rearrange, reduce, repeat
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed
import schedulefree
from torch.profiler import profile, record_function, ProfilerActivity

# Local
from supervoice_valle import SupervoceNARModel, Tokenizer
from train.dataset import load_sampler, create_async_loader

# We speculate that original paper has about 6k tokens per GPU
# 6k tokens is routhly 3 rows, because a single row is a 1500-2500 tokens
# We have MUCH faster GPUs and therefore instead of gradient accumulation,
# we increase batch size 4x and reduce number of gradients to just 4x
train_grad_accum_every = 8
train_batch_size = 8

# We speculate that learning rate is given for all GPUs, so we divide it by number of GPUs
train_lr_start = 1e-12
train_lr_max = 1e-5
train_steps = 600000
train_warmup_steps = 32000 # I am using faster warmup - it is more natural for me after working on voicebox
train_schedule_free = False

train_loader_workers = 32
train_log_every = 1
train_save_every = 1000
train_watch_every = 1000
train_evaluate_every = 200
train_evaluate_batches = 10
train_mixed_precision = "fp16" # "bf16" or "fp16" or None
train_clip_grad_norm = 0.2 # Common reproductions are using 100, but i am usually use 0.2
train_compile = False

# Train
def main():

# Prepare accelerator
ddp_kwargs = DistributedDataParallelKwargs()
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs], gradient_accumulation_steps = train_grad_accum_every, mixed_precision=train_mixed_precision)
device = accelerator.device
dtype = torch.float16 if train_mixed_precision == "fp16" else (torch.bfloat16 if train_mixed_precision == "bf16" else torch.float32)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
lr_start = train_lr_start * accelerator.num_processes
lr_max = train_lr_max * accelerator.num_processes

# Prepare dataset
accelerator.print("Loading dataset...")
tokenizer = Tokenizer("./tokenizer_text.model")
train_sampler = load_sampler("./external_datasets/libriheavy/libriheavy_cuts_small.jsonl.gz", "./external_datasets/libriheavy-encodec/", train_batch_size, tokenizer)
train_loader = create_async_loader(train_sampler, num_workers = train_loader_workers)
train_cycle = cycle(train_loader)

# Model
accelerator.print("Loading model...")
step = 1
model = SupervoceNARModel().to(device)
raw_model = model
wd_params, no_wd_params = [], []
for param in model.parameters():
param_list = no_wd_params if param.ndim < 2 else wd_params
param_list.append(param)
if not train_schedule_free:
optim = torch.optim.AdamW([{'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}], train_lr_start, betas=[0.9, 0.95],weight_decay=0.01, eps=1e-6)
else:
optim = schedulefree.AdamWScheduleFree([{'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}], lr=train_lr_max, betas=[0.9, 0.95],weight_decay=0.01, eps=1e-6)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max = train_steps)
if train_compile:
model = torch.compile(model, mode="reduce-overhead")
model, optim = accelerator.prepare(model, optim)

# Train step
def train_step():
model.train()
if train_schedule_free:
optim.train()

# Update LR
if not train_schedule_free:
if step < train_warmup_steps:
lr = (lr_start + ((lr_max - lr_start) * step) / train_warmup_steps)
for param_group in optim.param_groups:
param_group['lr'] = lr
lr = lr / accelerator.num_processes
else:
scheduler.step()
lr = scheduler.get_last_lr()[0] / accelerator.num_processes
else:
lr = lr_max / accelerator.num_processes

# Load batch
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], profile_memory=True, record_shapes=True) as prof:
for _ in range(train_grad_accum_every):
with accelerator.accumulate(model):
with accelerator.autocast():

# Load Batch
with record_function("load_batch"):

# Load batch
audio, text = next(train_cycle)

# Split audio
texts = []
audio_full = []
audio_partial = []
audio_codecs = []
for B in range(len(audio)):
a = audio[B].squeeze(0)
t = text[B].squeeze(0)
audio_duration = a.shape[1]
min_duration = 75 * 3
max_duration = audio_duration // 2
if max_duration > min_duration:
audio_split = random.randint(min_duration, max_duration)
else:
audio_split = max_duration
audio_full.append(a[:, :audio_split].to(device, non_blocking=True))
audio_partial.append(a[:, audio_split:].to(device, non_blocking=True))
audio_codecs.append(random.randint(1, 7))
texts.append(t.to(device, non_blocking=True))

# Forward
with record_function("forward"):
_, loss = model(
condition_text = texts,
condition_audio = audio_full,
audio = audio_partial,
codec = audio_codecs,
loss = True
)

# Check if loss is NaN
if torch.isnan(loss):
raise ValueError("Loss is NaN")

# Backprop
with record_function("backward"):
optim.zero_grad()
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), train_clip_grad_norm)
optim.step()

# Log skipping step
if not train_schedule_free:
if optim.step_was_skipped:
accelerator.print("Step was skipped")

if accelerator.is_main_process:
prof.export_chrome_trace("trace.json")
print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=50))
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=50))

return 0, lr

#
# Do step
#

train_step()


#
# Utility
#

def cycle(dl):
while True:
for data in dl:
yield data

if __name__ == "__main__":
main()
3 changes: 3 additions & 0 deletions benchmark.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
set -e
export 'PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512'
accelerate launch ./benchmark.py

0 comments on commit 8bc72e6

Please sign in to comment.