forked from elena-luo/SODE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution_classification.py
149 lines (126 loc) · 5.76 KB
/
solution_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from prompts import SOLUTION_CLASSIFICATION_PROMPT
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import json
import re
from openai import OpenAI
MAX_API_RETRY = 10
def get_response(prompt, system_prompt="you're a helpful ai assistant", model_name="gpt-4o-0806"):
i, correct = 0, False
client = OpenAI(
api_key="", # fill in with your own openai api key and url
base_url="",
)
j = 0
while j < MAX_API_RETRY and not correct:
j += 1
messages = [{"role": "system", "content": system_prompt}]
# role = list(dialog_prompt.keys())
messages.append({"role": "user", "content": prompt})
try:
completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=8192,
temperature=0.8,
# top_p=1, # openai suggest altering top_p or temperature but not both
n=1, # completion choices to generate for each input message.
)
response = completion.choices[0].message.content
return response.replace("```json", "").replace("```",""), completion
except Exception as e:
print(e)
return response.replace("```json", "").replace("```",""), completion
def get_solution_classification(js):
question = js['prompt']
ground_truth = js['ground_truth']
solutions = js['split_result_part4_formate']['Solution_Explore']
formatted_solutions = ""
cnt = 0
for i in range(100): # less than 100 solutions
if f'Solution{i+1}' in solutions:
solution_js = solutions[f'Solution{i+1}']
solution = "".join([solution_js[key] for key in solution_js])
formatted_solutions += f"Solution{i+1}:\n{solution}\n\n"
cnt += 1
else:
break
prompt = SOLUTION_CLASSIFICATION_PROMPT.format(question, ground_truth, formatted_solutions)
return (get_response(prompt), cnt)
def analyse_response(text):
solution_pattern = re.compile(r"## Solution (\d+)\s*(.*?)(?=## Solution \d+|\Z)", re.DOTALL)
# match label1 and label2
label_pattern = re.compile(r"<label(\d+)>(.*?)</label(\d+)>")
result = {'num_solutions': 0}
solutions = solution_pattern.findall(text)
result['num_solutions'] = len(solutions)
for i, solution in enumerate(solutions, 1):
solution_number, explanation = solution
solution_dict = {}
labels = label_pattern.findall(explanation)
for label in labels:
label_id = int(label[0])
label_content = label[1].strip()
if label_id == 1:
solution_dict['label1'] = label_content
elif label_id == 2:
if 'label2' not in solution_dict:
solution_dict['label2'] = []
solution_dict['label2'].append(label_content)
# match explanation part
explanation_for_label1 = re.search(r'Explanation for label1:(.*?)(?=<label2>|Quoted erroneous parts:|$)', explanation, re.DOTALL)
if explanation_for_label1:
solution_dict['explanation for label1'] = explanation_for_label1.group(1).strip()
explanation_for_label2 = re.search(r'Explanation for label2:(.*)', explanation, re.DOTALL)
if explanation_for_label2:
explanation_label2 = explanation_for_label2.group(1).strip()
explanation_label2 = re.sub(r'Quoted erroneous parts:.*', '', explanation_label2).strip()
solution_dict['explanation for label2'] = explanation_label2
quoted_erroneous_parts = re.search(r'Quoted erroneous parts:(.*)', explanation, re.DOTALL)
if quoted_erroneous_parts:
solution_dict['quoted_erroneous_parts'] = quoted_erroneous_parts.group(1).strip()
result[f'solution{solution_number}'] = solution_dict
return result
def parallel_LLM_check(js_list, max_workers=20):
responses = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_prompt = {executor.submit(get_solution_classification, js): js for js in js_list}
for future in tqdm(as_completed(future_to_prompt), total=len(js_list)):
js = future_to_prompt[future]
try:
(response, completion), cnt = future.result()
if response:
d = analyse_response(response)
new_d = {
'id': js['id'],
'real_num_solutions': cnt,
**d,
'raw_response': response
}
responses.append(new_d)
else:
print(f"Failed to get response for js id {js['id']}")
except Exception as e:
print(f"js id {js['id']} generated an exception: {e}")
return responses
if __name__ == '__main__':
js_list = []
with open("R1_split_part2_filtered_complete_answer_output.jsonl", "r") as f:
cnt = 0
for line in f:
js = json.loads(line)
js_list.append(js)
cnt += 1
print("total:", cnt)
responses = parallel_LLM_check(js_list)
for i in range(len(responses)):
for js in js_list:
if js['id'] == responses[i]['id']:
responses[i]['solutions'] = js['split_result_part4_formate']['Solution_Explore']
responses[i]['ground_truth'] = js['ground_truth']
break
with open("R1_split_part2_filtered_solution_classification.jsonl", "w") as f:
for js in responses:
f.write(json.dumps(js, ensure_ascii=False) + '\n')