Skip to content

Commit 1146966

Browse files
author
Andre Maia Chagas
authored
jupyter notebook showing how to open *.ibw files
*ibw are IGOR binary files. They can be opened with the python library conveniently named igor. It can be found here https://pypi.python.org/pypi/igor. This update just uploads this file containing one example how to import and load igor data.
1 parent cee01d4 commit 1146966

File tree

1 file changed

+253
-0
lines changed

1 file changed

+253
-0
lines changed

read_ibw_with_python.ipynb

+253
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,253 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 35,
6+
"metadata": {
7+
"collapsed": true
8+
},
9+
"outputs": [],
10+
"source": [
11+
"#set plots to show inline\n",
12+
"%matplotlib inline\n",
13+
"#import necessary libraries\n",
14+
"import matplotlib.pyplot as plt\n",
15+
"import seaborn as sns\n",
16+
"import numpy as np\n",
17+
"import os\n",
18+
"#import igor library. \n",
19+
"#if you are running Anaconda this can be installed via command line: \"pip install igor\".\n",
20+
"# the package can be found here: https://pypi.python.org/pypi/igor\n",
21+
"import igor\n"
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": 10,
27+
"metadata": {
28+
"collapsed": false
29+
},
30+
"outputs": [],
31+
"source": [
32+
"#get the current directory and add the filename\n",
33+
"filename = os.getcwd()+\"\\\\Q0_Roi.ibw\"\n"
34+
]
35+
},
36+
{
37+
"cell_type": "code",
38+
"execution_count": 39,
39+
"metadata": {
40+
"collapsed": false
41+
},
42+
"outputs": [],
43+
"source": [
44+
"#use the 'igor' library to read in the data. this creates a dictionary containing several keys and 'subkeys'\n",
45+
"data = igor.binarywave.load(filename)\n"
46+
]
47+
},
48+
{
49+
"cell_type": "code",
50+
"execution_count": 42,
51+
"metadata": {
52+
"collapsed": false
53+
},
54+
"outputs": [
55+
{
56+
"data": {
57+
"text/plain": [
58+
"dict_keys(['wave', 'version'])"
59+
]
60+
},
61+
"execution_count": 42,
62+
"metadata": {},
63+
"output_type": "execute_result"
64+
}
65+
],
66+
"source": [
67+
"# here are the keys\n",
68+
"data.keys()"
69+
]
70+
},
71+
{
72+
"cell_type": "code",
73+
"execution_count": 43,
74+
"metadata": {
75+
"collapsed": false
76+
},
77+
"outputs": [
78+
{
79+
"data": {
80+
"text/plain": [
81+
"{'version': 5,\n",
82+
" 'wave': {'bin_header': {'checksum': 21615,\n",
83+
" 'dataEUnitsSize': 0,\n",
84+
" 'dimEUnitsSize': array([0, 0, 0, 0]),\n",
85+
" 'dimLabelsSize': array([0, 0, 0, 0]),\n",
86+
" 'formulaSize': 0,\n",
87+
" 'noteSize': 0,\n",
88+
" 'optionsSize1': 0,\n",
89+
" 'optionsSize2': 0,\n",
90+
" 'sIndicesSize': 0,\n",
91+
" 'wfmSize': 16704},\n",
92+
" 'data_units': b'',\n",
93+
" 'dimension_units': b'',\n",
94+
" 'formula': b'',\n",
95+
" 'labels': [[], [], [], []],\n",
96+
" 'note': b'',\n",
97+
" 'sIndices': array([], dtype=float64),\n",
98+
" 'wData': array([[ 1., 1., 1., ..., 1., 1., 1.],\n",
99+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
100+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
101+
" ..., \n",
102+
" [ -4., 1., 1., ..., 1., 1., 1.],\n",
103+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
104+
" [ 1., 1., 1., ..., 1., 1., -87.]], dtype=float32),\n",
105+
" 'wave_header': {'aModified': 3,\n",
106+
" 'bname': b'Roi',\n",
107+
" 'botFullScale': 0.0,\n",
108+
" 'creationDate': 3460467370,\n",
109+
" 'dFolder': 102891752,\n",
110+
" 'dLock': 0,\n",
111+
" 'dataEUnits': 0,\n",
112+
" 'dataUnits': array([b'', b'', b'', b''], \n",
113+
" dtype='|S1'),\n",
114+
" 'depID': 936,\n",
115+
" 'dimEUnits': array([0, 0, 0, 0]),\n",
116+
" 'dimLabels': array([0, 0, 0, 0]),\n",
117+
" 'dimUnits': array([[b'', b'', b'', b''],\n",
118+
" [b'', b'', b'', b''],\n",
119+
" [b'', b'', b'', b''],\n",
120+
" [b'', b'', b'', b'']], \n",
121+
" dtype='|S1'),\n",
122+
" 'fileName': 0,\n",
123+
" 'formula': 0,\n",
124+
" 'fsValid': 0,\n",
125+
" 'kindBits': b'\\x00',\n",
126+
" 'modDate': 3460467370,\n",
127+
" 'nDim': array([64, 64, 0, 0]),\n",
128+
" 'next': 102898856,\n",
129+
" 'npnts': 4096,\n",
130+
" 'sIndices': 0,\n",
131+
" 'sfA': array([ 1., 1., 1., 1.]),\n",
132+
" 'sfB': array([ 0., 0., 0., 0.]),\n",
133+
" 'srcFldr': 0,\n",
134+
" 'swModified': 1,\n",
135+
" 'topFullScale': 0.0,\n",
136+
" 'type': 2,\n",
137+
" 'useBits': b'\\x00',\n",
138+
" 'wModified': 1,\n",
139+
" 'waveNoteH': 0,\n",
140+
" 'whUnused': array([196610, 2, 0, 0, 0, 0, 0, 0,\n",
141+
" 0, 0, 0, 0, 0, 0, 0, 0]),\n",
142+
" 'whVersion': 1,\n",
143+
" 'whpad1': array([b'', b'', b'', b'\\x03', b'\\x03', b'\\x03'], \n",
144+
" dtype='|S1'),\n",
145+
" 'whpad2': 0,\n",
146+
" 'whpad3': 1253,\n",
147+
" 'whpad4': 6}}}"
148+
]
149+
},
150+
"execution_count": 43,
151+
"metadata": {},
152+
"output_type": "execute_result"
153+
}
154+
],
155+
"source": [
156+
"#calling 'data' will display the whole dictionary structure and its contents. \n",
157+
"data"
158+
]
159+
},
160+
{
161+
"cell_type": "code",
162+
"execution_count": 44,
163+
"metadata": {
164+
"collapsed": false
165+
},
166+
"outputs": [
167+
{
168+
"data": {
169+
"text/plain": [
170+
"array([[ 1., 1., 1., ..., 1., 1., 1.],\n",
171+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
172+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
173+
" ..., \n",
174+
" [ -4., 1., 1., ..., 1., 1., 1.],\n",
175+
" [ 1., 1., 1., ..., 1., 1., 1.],\n",
176+
" [ 1., 1., 1., ..., 1., 1., -87.]], dtype=float32)"
177+
]
178+
},
179+
"execution_count": 44,
180+
"metadata": {},
181+
"output_type": "execute_result"
182+
}
183+
],
184+
"source": [
185+
"#I'm guessing most people will be interested in 'wData', which is loaded by the library as numpy array\n",
186+
"data['wave']['wData']"
187+
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"execution_count": 45,
192+
"metadata": {
193+
"collapsed": false
194+
},
195+
"outputs": [
196+
{
197+
"data": {
198+
"text/plain": [
199+
"<matplotlib.image.AxesImage at 0xb8dd2b0>"
200+
]
201+
},
202+
"execution_count": 45,
203+
"metadata": {},
204+
"output_type": "execute_result"
205+
},
206+
{
207+
"data": {
208+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD9CAYAAABzwKHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHfRJREFUeJztnX3QHUWd7z8nkoAECBEulHAhhKxPQ5kUolRhKOQhmOCG\nWh6gCkpRsNhNLioxLCqsEAVLys3FAoIFiAuENb7w4pKSF+81F5CkAljCvdkFK48bOmwMYKklBQIC\nAQQy94/zQp9+ZvrMzJnzkvT3U5Wqmenpnl/Oc36nf9/+dffUkiRBCBEfkwZtgBBiMMj5hYgUOb8Q\nkSLnFyJS5PxCRIqcX4hI2aUfDzHG1IAbgCOAN4DF1trf9uPZnh1HA1dYa+cZY2YBq4DtwLi1dkmf\nbNgF+FfgEGAK8M/Afw7IlknAzYBpPPvzwJuDsKVhz37ABmA+8M4A7fh34OXG6VZg+QBtuRgYAyZT\n96GHqrKlXz3/qcCu1tpjgEuAFX16bgtjzEXUv+i7Ni6tAJZZa0eBScaYU/pkylnA89ba44C/Ba4f\noC0nA4m19ljgUupf8oHY0vhR/BdgW+PSoOzYFcBae0Lj36IB2jIKzG34zfHAwVXa0i/nPxb4PwDW\n2seAo/r0XJf/Ak5zzj9irX24cbyGem/TD/6NuqMBvAd4G/jwIGyx1t4DnNs4nQG8OChbgKuA7wF/\nAGoDtOMIYKox5j5jzC8a0eKgbPkEMG6MuRu4F/hfVdrSL+ffi3fDKIC3GyFn37DW3kXd0ZrUnONX\ngGl9smObtfY1Y8yewJ3A1wZlS8Oe7caYVcC1wG2DsMUYcw7wnLX2Aef57vejn5/JNuBKa+0ngC8A\ntzK4v8++wEeA0x1bKvtc+uWAfwH2dJ9rrd3ep2dn4T5/T+Clfj3YGHMQsBb4gbX2jkHaAmCtPQcY\nAVYC7x2ALX8PLDDGrKPe8/4Q+G8DsANgM3Unw1r7FPACsP+AbHkBuM9a+7a1djP18TLX2buypV/O\n/0vgJABjzEeBjX16boj/MMYc1zheCDwcurkqjDH7A/cB/2St/UHj8uMDsuWsxoAS1L9Y7wAbGlqz\nb7ZYa0ettfOstfOAJ4CzgTWD+EyAfwCuBjDGHEA9ar2/359Jg0eojws1bZkKPFiVLX0Z7Qfuov7L\n/svG+d/36bkhLgRuNsZMBjYBq/v03EuAvYFLjTGXAQnwj8B1A7Dlp8D3jTHrqX8XzgeeBFYOwBaf\nQf19bqH+mTxMPSI7h3oP3PfPxFr7v40xHzPG/F/q0uMLwNNV2VLTqj4h4kSTfISIFDm/EJEi5xci\nUuT8QkSKnF+ISCmV6huWhTpCiPKU7fkHvlBHCNEdZZ1/GBbqCCG6IUmSwv9GRkZuHhkZ+YRz/vTI\nyMikrPupz2JLNm7cmDSPB/1PtsiWHdGWsnak+WXZ6b2FFups3LiR2bNnQ92Kko+sHtmSjmxJZ1hs\nKWpHrVZLvV7W+X8J/B2wOs9CnTlz5gB1o7MM6TeyJR3Zks6w2FKlHWWdfxgX6gghCtCXhT21Wi2B\n4fn1BNmShWxJZ1hsKWtHkiQTKmmSjxCRIucXIlLk/EJEipxfiEiR8wsRKf3awy83Bx98cNdtPPvs\ns23nRx2VPvs463oeNmzYkFl2zjnnFG6vSJ1Vq1a1nX/7298u/LwQfntf/epXg88vi/t/XrduXeo9\nWdfzMG/evNJ1q+b5558vVW/fffedcO2tt97q1hxAPb8Q0SLnFyJShi7srwJfOrghetlQPxTmDxo3\nLK9aAlRJGTm0I1M21O8X6vmFiBQ5vxCRIucXIlKGTvO7aboiaT8/vVcFw6zzs/DTcr0YA/C1eyj1\nl1fn+2m5sik+t53HH3+8VBtHHnlkqXrDrvF91PMLESlyfiEiZejC/ryUDfPdUH7Dhg1tqb+qwnw3\nDN4Z01srV65sO+/F/3HevHkkScK8efOCEsCXC2VD/VAbIRmwZcuW1rE/G6/KWX0ukydPBrqf6aee\nX4hIkfMLESlyfiEiZag1fy/Sdz6uzv/Yxz6Wed/DDz/cc1tChNJpS5cuzSwrO/XXredrfJ9Q+eLF\ni3M/M4vQ6rwqNH4RXI3fqczV7kX0v3uvVvUJISpHzi9EpGjrbodQ2O/jyoBTTz21rezuu+/u2pYQ\noTA/xHXXXZfblk6hfl66Cfubttx///1t10888cTWcS/Cfj+1t2XLFg499FB++9tiL6KeNWtW67iq\n2X/77LNP67tSJPzfZZddtHW3EKKOnF+ISJHzCxEpQ53q6wdFdH5e/DEAl6LjAVXijxW4YwCuxq9K\n7/ttFdH/TZ3v633/mq/P+536CxGa+lsWd4yuOc23aL0muZzfGHM0cIW1dp4xZhawCtgOjFtrl+S2\nQAgxNHQM+40xFwE3A7s2Lq0AlllrR4FJxphTemifEKJH5On5/ws4DfhR4/wj1tpmnmsNsAC4pwe2\nDZzQrL5QaB/CrVdEApRN7+VtsxmSL1q0iMWLF1ca+jfx23RlQFp4nwe/nisDikgAt15oFl9VvPji\ni123sX379q7qd+z5rbV3AW87l9x84SvAtK4sEEIMhDIDfu7PzZ7AS50qbNy4kdmzZwPpAw+DQra8\ny7XXXts67pctixYt6njPggULCrVZ1vY89Q499NBSbedtv1dtZd1fxvn/wxhznLX2IWAhsLZThTlz\n5rSMGLYZfmUX85QN+12aYX+ez6UXYb9Lc+S/6hl+ITqF/QsWLOCBBx4o1GbZ2X+dwv4yM/xc3Nl+\nUD7s33vvvVvflW7D/jLOfyFwszFmMrAJWN2VBQMm5OAf/ehHM8tcvV6F/j/11FPb2uy1s/u4z1u6\ndGmhtFzeHwq/zbI6vwrSpvBWjevwVWh8v61Jk9pVe9Efg1zOb619BjimcfwUcHyhpwghhg7N8BMi\nUrSqzyEU5od49NFH287zyoCqNL87U6/bFX9NW7773e/mrrtkSb55XkXD/DKa38XV/9A+BpB3U84m\neTR/Vbo+hKv5fUJhfy2lknp+ISJFzi9EpMj5hYiU6Ff1uTrf1+55xwD8+0JpwLKr+kK63j33d+vJ\nO1bgavwier/I/b4G73eqz9X5v/71r9vKjjjiiFxt+Lp+R0Y9vxCRIucXIlKiC/vdEN0P18um+kLP\n6MXmHaGNOC+++OK28yuuuCLz3qLh/Y6ALy1c/FA/qywttE+ShFmzZrF169bMNmbOnJnTyvxMnz59\ngh1N3nzzzbYyd8Zfntl+6vmFiBQ5vxCRIucXIlKi0PxVafkqOPvss1vHP/rRjwJ3ZuPr+rz3hvT/\nIHD1eSjtF9LxIUIavwhNnR/S+2nlrl6vcqqvr/XTrvsr/tKm8avnFyJS5PxCREoUYX8vcGcD+rLC\nLXPDfB+37Oyzzw7KgCKhft423NV4g077pYX2SZJw4okn8otf/CKz3vz589vOqwr1q8CVAX7KLi9Z\nIX4V9dTzCxEpcn4hIkXOL0Sk7JSav7lNeJOQPs+Lv+JvbGysdXzvvfe2lYV0fohQPTdNV4X+Hzay\ndH1I76eVu6vzhkn/+/z5z3/Odd+uu+7adl7lzlvq+YWIFDm/EJGy04T9fqifVeaG748++mhQBrj3\numG+j1/mpuzKSoCdhdDmnp1C+h0dd5Vf3jDfJ61eUwqUTQM2Uc8vRKTI+YWIFDm/EJGyw2r+kMbP\nW2/27NkTUnguIZ0fwq3nT9mNfQygn/ibcvY69efv5FNW5/eLoPMbY3YB/hU4BJgC/DPwn8Aq6q/q\nHrfW5ntdixBiqOgU9p8FPG+tPQ74W+B6YAWwzFo7CkwyxpzSYxuFED2gU9j/b8CdjeP3AG8DH7bW\nNt9rvQZYANzTG/P6S9kwvwj9TgP2ewOPvO/tqwp/Vd+vfvWrzHvz7s1fhNCmne973/tax72QAP7s\nPzf1l2dmYND5rbXbAIwxe1L/EfgacJVzyyvAtEIWCyGGgo5v6TXGHAT8FLjeWvsDY8yz1tqDG2Vj\nwHxr7fmhNsbHx5OyA3RCiO6o1WokSTLhLb2dBvz2B+4Dllhr1zUuP26MOc5a+xCwEFjb6eFz5swB\nqn1Fd7c/Jhs3bmTOnDmMj4+3rvUi7PcX/bg0w/4f/vCHfPaznw2248qFIgt78ob9zc08zjvvPG64\n4Ybc7fsUCfs7zfD7+Mc/zoMPPhi8p0jYP3fu3Ny2uWzdupVDDjmEp59+ekJZ3r36qwr7p0+fnulD\nobA/jU6a/xJgb+BSY8xlQAL8I3CdMWYysAlYnctq0ZG8G3r2Qsc3nfa8885jyZIlhXb26bXO9x3c\nJeTsoXuL/BDMnDmTJEmYOXNmcBPP3//+95llrv73KfvD8Pbbb7ed77JLscx9J81/AXBBStHxhZ4i\nhBg6NMNPiEjpOOBXyUNqtQSq1fw+RccA+qX5QzTHA5qfy7nnnpur3k033ZT7GcuXL88sW7Zs2YRr\nvfwbFaVpS5HQPi9F9X/W5xIK9fNy4IEHtp27MsCXC0mS8M4776S2Ewr70wb81PMLESlyfiEiRc4v\nRKTssKv6fFztHtL/7n3uMYRz8iGKjBW4z3A1fl6934mQxg/dm6b/B0lT5/dC7w8b/rhBKC0Ywk39\n5Un7qecXIlLk/EJEyk4T9rv44XyIBQsWdP08Xy6E9vSvKrx3KRLq52lj+fLlpWXA7bffnll25pln\nlmpzmKgitefjp/pefvnl4P3NkN6f4ecSKmuinl+ISJHzCxEpcn4hIqUvmn+PPfZIPQZ49dVX+2FC\nT/HHDbLSebHjjwfsKGMATZ1fpd53dX4njd8r1PMLESlyfiEiZeCpvp1BBjzwwAOZZf4KPMmAd3Fl\ngC8B5s6dS5IkzJ07t++z/DZv3tx2fuCBB5IkCQceeGBPUn2DQj2/EJEi5xciUuT8QkTKwDX/jkpI\n54vhILRbjz8FPLQStDkGsHnz5glTcV1C4wFFp/D2A/X8QkSKnF+ISBm6sN9N/Q1T2q+qMN9N/VWV\n9nNX4JVd4dds45JLLhm6jT3KvmyjyOpO996RkZG2Mjf156cBXUKSYBjCfB/1/EJEipxfiEiR8wsR\nKX3R/K5293V8v6f3uivwiuzi49+bdwzgk5/8ZGZZU//feOON3HTTTcExAHes4KKLLsq8z9frVezy\n0yvcKb1ZOwDdfvvtO8zqP388wB87KMO0adPazt2X7PibdObZvcelo/MbYyYBNwMG2A58HngTWNU4\nH7fW9vZNjUKIyskT9p8MJNbaY4FLgeXACmCZtXYUmGSMOaWHNgohekCud/UZYyZZa7cbYz4LzAPm\nW2sPapSNAQustUuz6k+ZMiUB+Otf/8qUKVPayt56663cxs6aNSv3vS5btmyZcK357rUqNvD0JUAo\n1E/jjjvu4FOf+hQ/+clPMu8JhfohrrzyytaxLwH68a6+0IaeIc4888yWLY888khb2bHHHptZr0h6\nLwt/tt/mzZv5wAc+wFNPPVW6TV8ChFJ/bqj/+uuvt5Xttttupf4+pd/V13D8VcC1wG2A29ArwLS0\nekKI4aXQW3qNMfsB/w/Yw1q7T+PaGPVI4Pyser/5zW+SD37wg93aKoQoQa1WS+358wz4nQX8d2vt\nFcAbwDvABmPMqLV2PbAQWBtq48gjjwQU9mehsH8iCvvrVBX2p5En1fdT4PvGmPWN+88HngRWGmMm\nA5uA1WUNmDx5ctu5+2NQ1tl93HbSfgjK4Dp8UWfPwm0n9ENQBPdHY9im7ZbF/zFwcR23ih8Cn9DU\n37L46Tzf4X06lQO8973v7XhPR+e31m4D0r7dx3dsXQgxtGiGnxCRMvBVfb7mryrUz8Jtf9asWcGZ\neu54QLe6vih++652L6L/3XqXX355rjqXX345l112We5nDBOuJPC1e0gGuPeGQvmqZvH5ob6LG7Ln\nCfHTyFNPPb8QkSLnFyJS5PxCRMpANH8v0nm9IDQe4KbieqH//VRfXp3vavxucMcHiuj/bvL6Lk3t\nHkrrdcKvG9qkc9OmTa3jUDrPL/vd736Xy5aDDjoos+y1117LLPNTdkUm5XVCPb8QkSLnFyJSBp7q\nGzRVzP7zQ/S8MqBZ74477uhqRl+ZdF6V3Hjjja1jP3wPyQD33m7C+yz8acBuaB/Cv29kZIQkSRgZ\nGckd5nciFOp3uq8pBULpvDxyQT2/EJEi5xciUuT8QkRKXzS/m9orsoR3RyWvfl+0aFHqcRqhFF4v\ndL6b3nM1fSf8e0ObdLrnvj4vOwbgtpNX4/eKUHqvG5rjAHlW7oVQzy9EpMj5hYiU6FN9vaBTCF81\nboheVgI027j00ku57LLLCoX6IcqmAY899liSJEndtceVBGXTeTsDfhpw6tSpheqr5xciUuT8QkSK\nnF+ISJHm7wG33HJL67gq/e+247bv46/AC40BZKXzqtL7PqE04Pr161PrpF0P7d47SHqV2usV6vmF\niBQ5vxCREn3YX9U+/r0mFOqHCG3E0avwvtdkSQSAww8/vHVcNu3nttEJN9T/4x//2Fb2/ve/v9Tz\n+4V6fiEiRc4vRKTI+YWIlIFr/kFq7mHW+2U1vs83vvGNzLLPfe5zreN+6H/3eRDW7mVx2/S1e2gM\nIK/O99N5vs7PKvP1f2gqbt5dfopO5/XJ5fyNV3NvAOZTf0vvKmA7MG6tXdKVBUKIgdAx7DfG7AL8\nC7CtcWkFsMxaOwpMMsac0kP7hBA9Ik/PfxXwPeASoAZ82Fr7cKNsDbAAuKcqg/bff/+u2/jTn/5U\ngSX9p4pQPxTmh2iG5Oeee+6E8LwbSeC2ddddd7WVjY6Oto57IQFCFEnnuYTC/CL1QmnAUDifJEmr\n/I033mgr22233QrZFOz5jTHnAM9Zax+g7vh+nVeA7DcOCiGGllroDSDGmPXUtT3AEcBTwJHW2imN\n8jFgvrX2/NBDxsfHk9DbUoQQvaNWq5EkSW3C9byv/zHGrAU+D1wJXG2tfcgY8z1grbX2zg4PT6Ae\nstRqE2xoo19hfx5bqiDPwp6VK1eyePHivof93/zmNydcS/tcehX2n3baaa3jtLD/uOOO46GHHir9\nbFdWQPtof9Gwv/m5lA37fcrO/nP/PkXC/jTnL5PquxC42RgzGdgErC7RRosqnL1Tm4McA8jj0CtX\nrqwstRfCd/Zrrrkm9T7/epExAP9e3+GzynxHrWIMwG+jrM7vBaE0YCd8p0+7nkf/53Z+a+0Jzunx\neesJIYYTzfATIlIGPsOvF+yoqT6XCy64oFS9NB3fJCvM70Q3MsDV9SEJ0At8KVEFfohexRhAKA2Y\nFeKnUWmqTwix8yLnFyJS5PxCREpfNL/7TjH//WIhfV4kDbgz6Pwq8McKvvOd71T+jNAYwI9//OPM\neq7+h/YxgLSpv0mSMDo6Wijt1wud3wuq2OWnqMb3Uc8vRKTI+YWIlKFO9SmU37nwJYEvA7IoEspv\n2LChdXzUUUflrlcWN3wPpf38MP8vf/lLrvb90D5Jkq7D/Sbq+YWIFDm/EJEi5xciUgau+f3U3+uv\nv946PuCAA3K384c//KEym3Ym3NTfl770pbaystN9/XZC6b0Qbr2zzjqrVBshXP0PvRkDeOaZZ1rH\nofRdXo1fVb08qOcXIlLk/EJEysDD/qpwJcKOKgHKruSLGT+0z3tvWQnghvlFyvbaa6+2816G83lR\nzy9EpMj5hYgUOb8QkTJwze+m9qBYeq8M8+bNSz1OY926dV0/7/TTT287X7363f1OXY3fK70fWtXn\npuz8tJ+fznMpm9qriiI6P28boTGAppYPafodEfX8QkSKnF+ISMn90o5u2H333ROAbdu2sfvuuwfv\n9WWAS0gS5E3vNUP9tWvXcsIJJ3S4+12KSAA/1M+iKQGaL2IoG/pXuWFH05brrrsu856lS5e2nVch\nA9Jm+GW9WKWKsN/HDfvTwvuDDz6YZ599tnT7M2bMaDsvm+rbc889S71sJu2lHer5hYgUOb8QkSLn\nFyJSBpLqC+n6ffbZJ7NskNN2/bSgOwaQV+P7uPVOP/30SrT7l7/85bbzFStW5KrnavyQ3k8rd/V6\nEf3v1vv5z3+eek/adVef90L/x0Iu5zfG/DvwcuN0K7AcWEX99d3j1tolPbFOCNEzOob9xphdof6i\nzsa/RcAKYJm1dhSYZIw5pcd2CiEqJk/PfwQw1RhzH/Ae4GvAh621DzfK1wALgHuyGnDDfD/kD4X5\nIQ477LBS9dxwfd26dR1n+WXh1nNn7UF5GRDCD+fL1PMlQKfwPi9uO37KLrRhR1ao3wm3nj8zL68M\nCM3o89NyVczs89twV/mF0n7+asAqU/N5Bvy2AVdaaz8BfAG4FXBzhq8A0yqzSAjRFzpO8jHGTAEm\nWWvfaJw/Rr3nn9w4HwPmW2vPz2pjfHw8mT17dnVWCyFyU6vVUif55An7/wGYAywxxhwA7AXcb4wZ\ntdauBxYCa0MNzJkzB0ifsVUk7H/hhRdax2XD/ieffLLNlrJhv4s/+69o2H/nnXdyxhlnTJAPLmXD\nfpc8Yf8Xv/hFrr/++tLPCM3+Kxr2L1y4kDVr1gTvOemkk9rOqwj7fZ555pmuZ/j5uNKiaNhfZoZf\nGnmc/xbg+8aYh6mP7p8DvACsNMZMBjYB2d9a2h28rMYfNqpI9YWowtn7he/wLnnSeUXxHd4llAZ0\ny5qdQBO3M/HLZsyYQZIkzJgxo7T+98cRXHwH7xcdnd9a+xaQtrXq8ZVbI4ToG5rhJ0SkDHwzj9jI\n0vWrV6/ueajvt++G60XSfqEwP4QfrueVAaEwP4Sv6/1wPi/Nek8++WShNKB776uvvpp53x577JFZ\nFqrnl4XaSUM9vxCRIucXIlLk/EJESl928qnVagm8m6Msm+4bpjx/3lSfr/E//elPt45vu+22Nlt6\nrfn9PP9VV13VOr7wwgvbbHHHAIpo/DvvvDOz7Iwzzsgs8/X/SSedVGlOG8pr/sMOO6yULSG9Xpap\nU6fy2muvpZaFNL928hFCtJDzCxEpfQn7p0+fngC8+OKLTJ8+nZdeeqlV1o/pvWnhXp4wzpUEZffw\nd8P8LG699VY+85nPtGQAVDfDzw313TA/i6985StcffXVLRmQh1Con5c0STCosD/tu5XHll6E+T4K\n+4UQXSPnFyJS5PxCRMpApvfuvfferWNXx0N4DMAtK5K2+dCHPtQ6fuKJJzLLfHqp8zvV89NyeccA\nQum8IqSlAXd0QuNE7vepyIq/sinnYUA9vxCRIucXIlIGvqrPlQDQLgN8CeCWzZw5s61s69atreNQ\nKO+Whe4rQtkw38dN9Z133nltZW44XyQN6IbsVUgAv82q8NOFodmAZaliVd8wUXQVn496fiEiRc4v\nRKTI+YWIlIFrfp9QGtDX+VllRdJ5g6Sp8W+99VZuu+22CTrfxS0rmwbckWiOATR3Ni7DsGn0vHSY\nptu11m+inl+ISJHzCxEpQxf2uyv+QmH+MOGm6KC61F8WoTTg17/+9bayb33rWz21Zdh47LHHWsf+\n7LuQDAjN4suLH47nXeVXVRhfFPX8QkSKnF+ISJHzCxEpA9f8rsaHwep8P0W4cOHCUu24YwC91v+d\ncMcA/Gm5eaf7dprO66biiuzq0ymFlyRJ6j2urg/h31eFrvfHEZ577rnMe10t3+0LNnpBLuc3xlwM\njAGTgRuAh4BV1F/cOW6tXdIrA4UQvaFj2G+MGQXmWmuPof5yzoOBFcAya+0oMMkYc0pPrRRCVE7H\nDTyNMcuBBPggsCfwT8Dd1tqDGuVjwAJrbebm7qENPPsR5rsr/pqkbchYNswP4b9fPrRvf2iGn8sN\nN9zQdu6n9/KSlgasetPMEPfee29m2djYWMsW/76xsbHWcV4JAHD00UcXN7JB05ZQmB9iv/32azt3\n2/HL8thRlLQNPPOE/ftS7+3/DjgUuJf2iOEVYFpha4QQAyVPz/8/geestdc0zp8A/sZau0fjfAyY\nb609P6uNTZs2JYcffnh1VgshclOr1Ur3/I8A5wPXGGMOAKYCDxpjRq2164GFwNpQA8cccwygsB8U\n9rso7E8vy2NHFeR6aYcx5grgBKAGXAI8DaykPvq/Cfgf1trMhkKa36cXPwaDdH4f/8cgyxb/h8B1\n+CqdPY8tVRFy9jROPvlkfvazn0247jq/j/tj0I2z+3Tr/EUI/Rj0W/Njrb045fLxhS0QQgwNmuEn\nRKT0ZYafG+aHQn5oD9F3lFV9IdLC/DxUpetDbewoK/5CYb5PlaF+vyii+atEPb8QkSLnFyJS5PxC\nREquVF/XD6nVEug+jVTFGEBzTCGPLVWk/vJo/jy2VKH5QzT1/7Ck+tw8/zBQdaqvrM7P+5mk+PWE\nSur5hYgUOb8QkdKXsF8IMXyo5xciUuT8QkSKnF+ISJHzCxEpcn4hIkXOL0Sk/H+qC+9R2L5cIQAA\nAABJRU5ErkJggg==\n",
209+
"text/plain": [
210+
"<matplotlib.figure.Figure at 0xb87ae10>"
211+
]
212+
},
213+
"metadata": {},
214+
"output_type": "display_data"
215+
}
216+
],
217+
"source": [
218+
"#we can also display it..\n",
219+
"plt.matshow(data['wave']['wData'])"
220+
]
221+
},
222+
{
223+
"cell_type": "code",
224+
"execution_count": null,
225+
"metadata": {
226+
"collapsed": true
227+
},
228+
"outputs": [],
229+
"source": []
230+
}
231+
],
232+
"metadata": {
233+
"kernelspec": {
234+
"display_name": "Python 3",
235+
"language": "python",
236+
"name": "python3"
237+
},
238+
"language_info": {
239+
"codemirror_mode": {
240+
"name": "ipython",
241+
"version": 3
242+
},
243+
"file_extension": ".py",
244+
"mimetype": "text/x-python",
245+
"name": "python",
246+
"nbconvert_exporter": "python",
247+
"pygments_lexer": "ipython3",
248+
"version": "3.5.1"
249+
}
250+
},
251+
"nbformat": 4,
252+
"nbformat_minor": 0
253+
}

0 commit comments

Comments
 (0)