Skip to content

Commit 81335ec

Browse files
committed
更新
1 parent 3fdd7f6 commit 81335ec

File tree

4 files changed

+25
-3
lines changed

4 files changed

+25
-3
lines changed

Diff for: binary-Q1Inter-HFT-RV3.Rmd

+6
Original file line numberDiff line numberDiff line change
@@ -701,6 +701,12 @@ I set the length of data as quarterly (`3 months * 22 days * 1440 mins = 95040 m
701701

702702
### Grouped Models
703703

704+
> VAR分析中的一个中心问题是找到滞后的阶数,以产生最佳结果。模型比较通常基于信息标准,例如AIC,BIC或HQ。通常,由于是小样本预测,AIC优于其他标准。但是,BIC和HQ在大型样本中效果很好
705+
706+
Citation: [R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e7%94%a8%e5%90%91%e9%87%8f%e8%87%aa%e5%9b%9e%e5%bd%92%ef%bc%88var%ef%bc%89%e8%bf%9b%e8%a1%8c%e7%bb%8f%e6%b5%8e%e6%95%b0%e6%8d%ae%e8%84%89%e5%86%b2%e5%93%8d%e5%ba%94%e7%a0%94)
707+
708+
709+
704710
Here I read the saved models.
705711

706712
Due to the models only forecast `1440 mins` (but not `7200 mins`) in advance, here I no need to filter the forecast price.

Diff for: copula-draft.R

+9
Original file line numberDiff line numberDiff line change
@@ -99,6 +99,15 @@ for(i in 1:out){
9999
## R语言ARMA-GARCH-COPULA模型和金融时间序列案例
100100
## http://tecdat.cn/r%e8%af%ad%e8%a8%80copulas%e5%92%8c%e9%87%91%e8%9e%8d%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e6%a1%88%e4%be%8b
101101
##
102+
##
103+
##
104+
##
105+
##
106+
##
107+
##
108+
##
109+
##
110+
##
102111

103112

104113

Diff for: copula-draft2.R

+7
Original file line numberDiff line numberDiff line change
@@ -49,4 +49,11 @@ fc <- varxforecast(X = Dat, Bcoef = fit@mfit$stdresid, p = 4,
4949
## R语言ARMA-GARCH-COPULA模型和金融时间序列案例
5050
## http://tecdat.cn/r%e8%af%ad%e8%a8%80copulas%e5%92%8c%e9%87%91%e8%9e%8d%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e6%a1%88%e4%be%8b
5151
##
52+
##
53+
##
54+
##
55+
##
56+
##
57+
##
58+
##
5259

Diff for: 投资风险管理.qmd

+3-3
Original file line numberDiff line numberDiff line change
@@ -27,9 +27,9 @@ format: html
2727
5) [R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型](http://tecdat.cn/%e9%9a%8f%e6%9c%ba%e6%90%9c%e7%b4%a2%e5%8f%98%e9%87%8f%e9%80%89%e6%8b%a9ssvs%e4%bc%b0%e8%ae%a1%e8%b4%9d%e5%8f%b6%e6%96%af%e5%90%91%e9%87%8f%e8%87%aa%e5%9b%9e%e5%bd%92%ef%bc%88bvar%ef%bc%89%e6%a8%a1)
2828
6) [R语言中的STAN概率编程MCMC采样的贝叶斯模型](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%b8%ad%e7%9a%84stan%e6%a6%82%e7%8e%87%e7%bc%96%e7%a8%8bmcmc%e9%87%87%e6%a0%b7%e7%9a%84%e8%b4%9d%e5%8f%b6%e6%96%af%e6%a8%a1%e5%9e%8b)
2929
7) [R语言估计时变VAR模型时间序列的实证研究分析案例](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%bc%b0%e8%ae%a1%e6%97%b6%e5%8f%98var%e6%a8%a1%e5%9e%8b%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%ae%9e%e8%af%81%e7%a0%94%e7%a9%b6%e5%88%86%e6%9e%90%e6%a1%88%e4%be%8b)
30-
8) []()
31-
9) []()
32-
10) []()
30+
8) [R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e7%94%a8%e5%90%91%e9%87%8f%e8%87%aa%e5%9b%9e%e5%bd%92%ef%bc%88var%ef%bc%89%e8%bf%9b%e8%a1%8c%e7%bb%8f%e6%b5%8e%e6%95%b0%e6%8d%ae%e8%84%89%e5%86%b2%e5%93%8d%e5%ba%94%e7%a0%94)
31+
9) [GARCH(1,1),MA以及历史模拟法的VAR比较](http://tecdat.cn/garch%ef%bc%8811%ef%bc%89%ef%bc%8cma%e4%bb%a5%e5%8f%8a%e5%8e%86%e5%8f%b2%e6%a8%a1%e6%8b%9f%e6%b3%95%e7%9a%84var%e6%af%94%e8%be%83)
32+
10) [R语言基于ARMA-GARCH过程的VAR拟合和预测](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e5%9f%ba%e4%ba%8earma-garch%e8%bf%87%e7%a8%8b%e7%9a%84var%e6%8b%9f%e5%90%88%e5%92%8c%e9%a2%84%e6%b5%8b-2)
3333
11) []()
3434
12) []()
3535
13) []()

0 commit comments

Comments
 (0)