forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_col_v2.go
838 lines (812 loc) · 29.3 KB
/
analyze_col_v2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// Copyright 2022 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"context"
"math"
"sort"
"sync/atomic"
"time"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/config"
"github.com/pingcap/tidb/domain"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/statistics"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/memory"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tidb/util/timeutil"
"github.com/pingcap/tipb/go-tipb"
"go.uber.org/zap"
)
// AnalyzeColumnsExecV2 is used to maintain v2 analyze process
type AnalyzeColumnsExecV2 struct {
*AnalyzeColumnsExec
}
func (e *AnalyzeColumnsExecV2) analyzeColumnsPushDownWithRetryV2() *statistics.AnalyzeResults {
analyzeResult := e.analyzeColumnsPushDownV2()
// do not retry if succeed / not oom error / not auto-analyze / samplerate not set
if analyzeResult.Err == nil || analyzeResult.Err != errAnalyzeOOM ||
!e.ctx.GetSessionVars().InRestrictedSQL ||
e.analyzePB.ColReq == nil || *e.analyzePB.ColReq.SampleRate <= 0 {
return analyzeResult
}
finishJobWithLog(e.ctx, analyzeResult.Job, analyzeResult.Err)
statsHandle := domain.GetDomain(e.ctx).StatsHandle()
if statsHandle == nil {
return analyzeResult
}
var statsTbl *statistics.Table
tid := e.tableID.GetStatisticsID()
if tid == e.tableInfo.ID {
statsTbl = statsHandle.GetTableStats(e.tableInfo)
} else {
statsTbl = statsHandle.GetPartitionStats(e.tableInfo, tid)
}
if statsTbl == nil || statsTbl.Count <= 0 {
return analyzeResult
}
newSampleRate := math.Min(1, float64(config.DefRowsForSampleRate)/float64(statsTbl.Count))
if newSampleRate >= *e.analyzePB.ColReq.SampleRate {
return analyzeResult
}
*e.analyzePB.ColReq.SampleRate = newSampleRate
prepareV2AnalyzeJobInfo(e.AnalyzeColumnsExec, true)
AddNewAnalyzeJob(e.ctx, e.job)
StartAnalyzeJob(e.ctx, e.job)
return e.analyzeColumnsPushDownV2()
}
func (e *AnalyzeColumnsExecV2) analyzeColumnsPushDownV2() *statistics.AnalyzeResults {
var ranges []*ranger.Range
if hc := e.handleCols; hc != nil {
if hc.IsInt() {
ranges = ranger.FullIntRange(mysql.HasUnsignedFlag(hc.GetCol(0).RetType.GetFlag()))
} else {
ranges = ranger.FullNotNullRange()
}
} else {
ranges = ranger.FullIntRange(false)
}
collExtStats := e.ctx.GetSessionVars().EnableExtendedStats
specialIndexes := make([]*model.IndexInfo, 0, len(e.indexes))
specialIndexesOffsets := make([]int, 0, len(e.indexes))
for i, idx := range e.indexes {
isSpecial := false
for _, col := range idx.Columns {
colInfo := e.colsInfo[col.Offset]
isVirtualCol := colInfo.IsGenerated() && !colInfo.GeneratedStored
isPrefixCol := col.Length != types.UnspecifiedLength
if isVirtualCol || isPrefixCol {
isSpecial = true
break
}
}
if isSpecial {
specialIndexesOffsets = append(specialIndexesOffsets, i)
specialIndexes = append(specialIndexes, idx)
}
}
idxNDVPushDownCh := make(chan analyzeIndexNDVTotalResult, 1)
// subIndexWorkerWg is better to be initialized in handleNDVForSpecialIndexes, however if we do so, golang would
// report unexpected/unreasonable data race error on subIndexWorkerWg when running TestAnalyzeVirtualCol test
// case with `-race` flag now.
var wg util.WaitGroupWrapper
wg.Run(func() {
e.handleNDVForSpecialIndexes(specialIndexes, idxNDVPushDownCh)
})
defer wg.Wait()
count, hists, topns, fmSketches, extStats, err := e.buildSamplingStats(ranges, collExtStats, specialIndexesOffsets, idxNDVPushDownCh)
if err != nil {
e.memTracker.Release(e.memTracker.BytesConsumed())
return &statistics.AnalyzeResults{Err: err, Job: e.job}
}
cLen := len(e.analyzePB.ColReq.ColumnsInfo)
colGroupResult := &statistics.AnalyzeResult{
Hist: hists[cLen:],
TopNs: topns[cLen:],
Fms: fmSketches[cLen:],
IsIndex: 1,
}
// Discard stats of _tidb_rowid.
// Because the process of analyzing will keep the order of results be the same as the colsInfo in the analyze task,
// and in `buildAnalyzeFullSamplingTask` we always place the _tidb_rowid at the last of colsInfo, so if there are
// stats for _tidb_rowid, it must be at the end of the column stats.
// Virtual column has no histogram yet. So we check nil here.
if hists[cLen-1] != nil && hists[cLen-1].ID == -1 {
cLen -= 1
}
colResult := &statistics.AnalyzeResult{
Hist: hists[:cLen],
TopNs: topns[:cLen],
Fms: fmSketches[:cLen],
}
return &statistics.AnalyzeResults{
TableID: e.tableID,
Ars: []*statistics.AnalyzeResult{colResult, colGroupResult},
Job: e.job,
StatsVer: e.StatsVersion,
Count: count,
Snapshot: e.snapshot,
ExtStats: extStats,
BaseCount: e.baseCount,
BaseModifyCnt: e.baseModifyCnt,
}
}
// decodeSampleDataWithVirtualColumn constructs the virtual column by evaluating from the deocded normal columns.
// If it failed, it would return false to trigger normal decoding way without the virtual column.
func (e *AnalyzeColumnsExecV2) decodeSampleDataWithVirtualColumn(
collector statistics.RowSampleCollector,
fieldTps []*types.FieldType,
virtualColIdx []int,
schema *expression.Schema,
) error {
totFts := make([]*types.FieldType, 0, e.schemaForVirtualColEval.Len())
for _, col := range e.schemaForVirtualColEval.Columns {
totFts = append(totFts, col.RetType)
}
chk := chunk.NewChunkWithCapacity(totFts, len(collector.Base().Samples))
decoder := codec.NewDecoder(chk, e.ctx.GetSessionVars().Location())
for _, sample := range collector.Base().Samples {
for i := range sample.Columns {
if schema.Columns[i].VirtualExpr != nil {
continue
}
_, err := decoder.DecodeOne(sample.Columns[i].GetBytes(), i, e.schemaForVirtualColEval.Columns[i].RetType)
if err != nil {
return err
}
}
}
err := table.FillVirtualColumnValue(fieldTps, virtualColIdx, schema.Columns, e.colsInfo, e.ctx, chk)
if err != nil {
return err
}
iter := chunk.NewIterator4Chunk(chk)
for row, i := iter.Begin(), 0; row != iter.End(); row, i = iter.Next(), i+1 {
datums := row.GetDatumRow(totFts)
collector.Base().Samples[i].Columns = datums
}
return nil
}
func printAnalyzeMergeCollectorLog(oldRootCount, newRootCount, subCount, tableID, partitionID int64, isPartition bool, info string, index int) {
if index < 0 {
logutil.BgLogger().Debug(info,
zap.Int64("tableID", tableID),
zap.Int64("partitionID", partitionID),
zap.Bool("isPartitionTable", isPartition),
zap.Int64("oldRootCount", oldRootCount),
zap.Int64("newRootCount", newRootCount),
zap.Int64("subCount", subCount))
} else {
logutil.BgLogger().Debug(info,
zap.Int64("tableID", tableID),
zap.Int64("partitionID", partitionID),
zap.Bool("isPartitionTable", isPartition),
zap.Int64("oldRootCount", oldRootCount),
zap.Int64("newRootCount", newRootCount),
zap.Int64("subCount", subCount),
zap.Int("subCollectorIndex", index))
}
}
func (e *AnalyzeColumnsExecV2) buildSamplingStats(
ranges []*ranger.Range,
needExtStats bool,
indexesWithVirtualColOffsets []int,
idxNDVPushDownCh chan analyzeIndexNDVTotalResult,
) (
count int64,
hists []*statistics.Histogram,
topns []*statistics.TopN,
fmSketches []*statistics.FMSketch,
extStats *statistics.ExtendedStatsColl,
err error,
) {
if err = e.open(ranges); err != nil {
return 0, nil, nil, nil, nil, err
}
defer func() {
if err1 := e.resultHandler.Close(); err1 != nil {
err = err1
}
}()
l := len(e.analyzePB.ColReq.ColumnsInfo) + len(e.analyzePB.ColReq.ColumnGroups)
rootRowCollector := statistics.NewRowSampleCollector(int(e.analyzePB.ColReq.SampleSize), e.analyzePB.ColReq.GetSampleRate(), l)
for i := 0; i < l; i++ {
rootRowCollector.Base().FMSketches = append(rootRowCollector.Base().FMSketches, statistics.NewFMSketch(maxSketchSize))
}
sc := e.ctx.GetSessionVars().StmtCtx
statsConcurrency, err := getBuildStatsConcurrency(e.ctx)
if err != nil {
return 0, nil, nil, nil, nil, err
}
mergeResultCh := make(chan *samplingMergeResult, statsConcurrency)
mergeTaskCh := make(chan []byte, statsConcurrency)
e.samplingMergeWg = &util.WaitGroupWrapper{}
e.samplingMergeWg.Add(statsConcurrency)
for i := 0; i < statsConcurrency; i++ {
go e.subMergeWorker(mergeResultCh, mergeTaskCh, l, i)
}
if err = readDataAndSendTask(e.ctx, e.resultHandler, mergeTaskCh, e.memTracker); err != nil {
return 0, nil, nil, nil, nil, getAnalyzePanicErr(err)
}
mergeWorkerPanicCnt := 0
for mergeWorkerPanicCnt < statsConcurrency {
mergeResult, ok := <-mergeResultCh
if !ok {
break
}
if mergeResult.err != nil {
err = mergeResult.err
if isAnalyzeWorkerPanic(mergeResult.err) {
mergeWorkerPanicCnt++
}
continue
}
oldRootCollectorSize := rootRowCollector.Base().MemSize
oldRootCollectorCount := rootRowCollector.Base().Count
rootRowCollector.MergeCollector(mergeResult.collector)
newRootCollectorCount := rootRowCollector.Base().Count
printAnalyzeMergeCollectorLog(oldRootCollectorCount, newRootCollectorCount,
mergeResult.collector.Base().Count, e.tableID.TableID, e.tableID.PartitionID, e.tableID.IsPartitionTable(),
"merge subMergeWorker in AnalyzeColumnsExecV2", -1)
e.memTracker.Consume(rootRowCollector.Base().MemSize - oldRootCollectorSize - mergeResult.collector.Base().MemSize)
}
defer e.memTracker.Release(rootRowCollector.Base().MemSize)
if err != nil {
return 0, nil, nil, nil, nil, err
}
// handling virtual columns
virtualColIdx := buildVirtualColumnIndex(e.schemaForVirtualColEval, e.colsInfo)
if len(virtualColIdx) > 0 {
fieldTps := make([]*types.FieldType, 0, len(virtualColIdx))
for _, colOffset := range virtualColIdx {
fieldTps = append(fieldTps, e.schemaForVirtualColEval.Columns[colOffset].RetType)
}
err = e.decodeSampleDataWithVirtualColumn(rootRowCollector, fieldTps, virtualColIdx, e.schemaForVirtualColEval)
if err != nil {
return 0, nil, nil, nil, nil, err
}
} else {
// If there's no virtual column or we meet error during eval virtual column, we fallback to normal decode otherwise.
for _, sample := range rootRowCollector.Base().Samples {
for i := range sample.Columns {
sample.Columns[i], err = tablecodec.DecodeColumnValue(sample.Columns[i].GetBytes(), &e.colsInfo[i].FieldType, sc.TimeZone)
if err != nil {
return 0, nil, nil, nil, nil, err
}
}
}
}
for _, sample := range rootRowCollector.Base().Samples {
// Calculate handle from the row data for each row. It will be used to sort the samples.
sample.Handle, err = e.handleCols.BuildHandleByDatums(sample.Columns)
if err != nil {
return 0, nil, nil, nil, nil, err
}
}
colLen := len(e.colsInfo)
// The order of the samples are broken when merging samples from sub-collectors.
// So now we need to sort the samples according to the handle in order to calculate correlation.
sort.Slice(rootRowCollector.Base().Samples, func(i, j int) bool {
return rootRowCollector.Base().Samples[i].Handle.Compare(rootRowCollector.Base().Samples[j].Handle) < 0
})
totalLen := len(e.colsInfo) + len(e.indexes)
hists = make([]*statistics.Histogram, totalLen)
topns = make([]*statistics.TopN, totalLen)
fmSketches = make([]*statistics.FMSketch, 0, totalLen)
buildResultChan := make(chan error, totalLen)
buildTaskChan := make(chan *samplingBuildTask, totalLen)
if totalLen < statsConcurrency {
statsConcurrency = totalLen
}
e.samplingBuilderWg = newNotifyErrorWaitGroupWrapper(buildResultChan)
sampleCollectors := make([]*statistics.SampleCollector, len(e.colsInfo))
exitCh := make(chan struct{})
e.samplingBuilderWg.Add(statsConcurrency)
for i := 0; i < statsConcurrency; i++ {
e.samplingBuilderWg.Run(func() {
e.subBuildWorker(buildResultChan, buildTaskChan, hists, topns, sampleCollectors, exitCh)
})
}
for i, col := range e.colsInfo {
buildTaskChan <- &samplingBuildTask{
id: col.ID,
rootRowCollector: rootRowCollector,
tp: &col.FieldType,
isColumn: true,
slicePos: i,
}
fmSketches = append(fmSketches, rootRowCollector.Base().FMSketches[i])
}
indexPushedDownResult := <-idxNDVPushDownCh
if indexPushedDownResult.err != nil {
close(exitCh)
e.samplingBuilderWg.Wait()
return 0, nil, nil, nil, nil, indexPushedDownResult.err
}
for _, offset := range indexesWithVirtualColOffsets {
ret := indexPushedDownResult.results[e.indexes[offset].ID]
rootRowCollector.Base().NullCount[colLen+offset] = ret.Count
rootRowCollector.Base().FMSketches[colLen+offset] = ret.Ars[0].Fms[0]
}
// build index stats
for i, idx := range e.indexes {
buildTaskChan <- &samplingBuildTask{
id: idx.ID,
rootRowCollector: rootRowCollector,
tp: types.NewFieldType(mysql.TypeBlob),
isColumn: false,
slicePos: colLen + i,
}
fmSketches = append(fmSketches, rootRowCollector.Base().FMSketches[colLen+i])
}
close(buildTaskChan)
panicCnt := 0
for panicCnt < statsConcurrency {
err1, ok := <-buildResultChan
if !ok {
break
}
if err1 != nil {
err = err1
if isAnalyzeWorkerPanic(err1) {
panicCnt++
}
continue
}
}
defer func() {
totalSampleCollectorSize := int64(0)
for _, sampleCollector := range sampleCollectors {
if sampleCollector != nil {
totalSampleCollectorSize += sampleCollector.MemSize
}
}
e.memTracker.Release(totalSampleCollectorSize)
}()
if err != nil {
return 0, nil, nil, nil, nil, err
}
count = rootRowCollector.Base().Count
if needExtStats {
statsHandle := domain.GetDomain(e.ctx).StatsHandle()
extStats, err = statsHandle.BuildExtendedStats(e.TableID.GetStatisticsID(), e.colsInfo, sampleCollectors)
if err != nil {
return 0, nil, nil, nil, nil, err
}
}
return
}
// handleNDVForSpecialIndexes deals with the logic to analyze the index containing the virtual column when the mode is full sampling.
func (e *AnalyzeColumnsExecV2) handleNDVForSpecialIndexes(indexInfos []*model.IndexInfo, totalResultCh chan analyzeIndexNDVTotalResult) {
defer func() {
if r := recover(); r != nil {
logutil.BgLogger().Error("analyze ndv for special index panicked", zap.Any("recover", r), zap.Stack("stack"))
metrics.PanicCounter.WithLabelValues(metrics.LabelAnalyze).Inc()
totalResultCh <- analyzeIndexNDVTotalResult{
err: getAnalyzePanicErr(r),
}
}
}()
tasks := e.buildSubIndexJobForSpecialIndex(indexInfos)
statsConcurrncy, err := getBuildStatsConcurrency(e.ctx)
taskCh := make(chan *analyzeTask, len(tasks))
for _, task := range tasks {
AddNewAnalyzeJob(e.ctx, task.job)
}
resultsCh := make(chan *statistics.AnalyzeResults, len(tasks))
if len(tasks) < statsConcurrncy {
statsConcurrncy = len(tasks)
}
var subIndexWorkerWg = NewAnalyzeResultsNotifyWaitGroupWrapper(resultsCh)
subIndexWorkerWg.Add(statsConcurrncy)
for i := 0; i < statsConcurrncy; i++ {
subIndexWorkerWg.Run(func() { e.subIndexWorkerForNDV(taskCh, resultsCh) })
}
for _, task := range tasks {
taskCh <- task
}
close(taskCh)
panicCnt := 0
totalResult := analyzeIndexNDVTotalResult{
results: make(map[int64]*statistics.AnalyzeResults, len(indexInfos)),
}
for panicCnt < statsConcurrncy {
results, ok := <-resultsCh
if !ok {
break
}
if results.Err != nil {
err = results.Err
FinishAnalyzeJob(e.ctx, results.Job, err)
if isAnalyzeWorkerPanic(err) {
panicCnt++
}
continue
}
FinishAnalyzeJob(e.ctx, results.Job, nil)
totalResult.results[results.Ars[0].Hist[0].ID] = results
}
if err != nil {
totalResult.err = err
}
totalResultCh <- totalResult
}
// subIndexWorker receive the task for each index and return the result for them.
func (e *AnalyzeColumnsExecV2) subIndexWorkerForNDV(taskCh chan *analyzeTask, resultsCh chan *statistics.AnalyzeResults) {
var task *analyzeTask
defer func() {
if r := recover(); r != nil {
logutil.BgLogger().Error("analyze worker panicked", zap.Any("recover", r), zap.Stack("stack"))
metrics.PanicCounter.WithLabelValues(metrics.LabelAnalyze).Inc()
resultsCh <- &statistics.AnalyzeResults{
Err: getAnalyzePanicErr(r),
Job: task.job,
}
}
}()
for {
var ok bool
task, ok = <-taskCh
if !ok {
break
}
StartAnalyzeJob(e.ctx, task.job)
if task.taskType != idxTask {
resultsCh <- &statistics.AnalyzeResults{
Err: errors.Errorf("incorrect analyze type"),
Job: task.job,
}
continue
}
task.idxExec.job = task.job
resultsCh <- analyzeIndexNDVPushDown(task.idxExec)
}
}
// buildSubIndexJobForSpecialIndex builds sub index pushed down task to calculate the NDV information for indexes containing virtual column.
// This is because we cannot push the calculation of the virtual column down to the tikv side.
func (e *AnalyzeColumnsExecV2) buildSubIndexJobForSpecialIndex(indexInfos []*model.IndexInfo) []*analyzeTask {
_, offset := timeutil.Zone(e.ctx.GetSessionVars().Location())
tasks := make([]*analyzeTask, 0, len(indexInfos))
sc := e.ctx.GetSessionVars().StmtCtx
for _, indexInfo := range indexInfos {
base := baseAnalyzeExec{
ctx: e.ctx,
tableID: e.TableID,
concurrency: e.ctx.GetSessionVars().IndexSerialScanConcurrency(),
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeIndex,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
snapshot: e.snapshot,
}
idxExec := &AnalyzeIndexExec{
baseAnalyzeExec: base,
isCommonHandle: e.tableInfo.IsCommonHandle,
idxInfo: indexInfo,
}
idxExec.opts = make(map[ast.AnalyzeOptionType]uint64, len(ast.AnalyzeOptionString))
idxExec.opts[ast.AnalyzeOptNumTopN] = 0
idxExec.opts[ast.AnalyzeOptCMSketchDepth] = 0
idxExec.opts[ast.AnalyzeOptCMSketchWidth] = 0
idxExec.opts[ast.AnalyzeOptNumSamples] = 0
idxExec.opts[ast.AnalyzeOptNumBuckets] = 1
statsVersion := new(int32)
*statsVersion = statistics.Version1
// No Top-N
topnSize := int32(0)
idxExec.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
// One bucket to store the null for null histogram.
BucketSize: 1,
NumColumns: int32(len(indexInfo.Columns)),
TopNSize: &topnSize,
Version: statsVersion,
SketchSize: maxSketchSize,
}
if idxExec.isCommonHandle && indexInfo.Primary {
idxExec.analyzePB.Tp = tipb.AnalyzeType_TypeCommonHandle
}
// No CM-Sketch.
depth := int32(0)
width := int32(0)
idxExec.analyzePB.IdxReq.CmsketchDepth = &depth
idxExec.analyzePB.IdxReq.CmsketchWidth = &width
autoAnalyze := ""
if e.ctx.GetSessionVars().InRestrictedSQL {
autoAnalyze = "auto "
}
job := &statistics.AnalyzeJob{DBName: e.job.DBName, TableName: e.job.TableName, PartitionName: e.job.PartitionName, JobInfo: autoAnalyze + "analyze ndv for index " + indexInfo.Name.O}
idxExec.job = job
tasks = append(tasks, &analyzeTask{
taskType: idxTask,
idxExec: idxExec,
job: job,
})
}
return tasks
}
func (e *AnalyzeColumnsExecV2) subMergeWorker(resultCh chan<- *samplingMergeResult, taskCh <-chan []byte, l int, index int) {
isClosedChanThread := index == 0
defer func() {
if r := recover(); r != nil {
logutil.BgLogger().Error("analyze worker panicked", zap.Any("recover", r), zap.Stack("stack"))
metrics.PanicCounter.WithLabelValues(metrics.LabelAnalyze).Inc()
resultCh <- &samplingMergeResult{err: getAnalyzePanicErr(r)}
}
// Consume the remaining things.
for {
_, ok := <-taskCh
if !ok {
break
}
}
e.samplingMergeWg.Done()
if isClosedChanThread {
e.samplingMergeWg.Wait()
close(resultCh)
}
}()
failpoint.Inject("mockAnalyzeSamplingMergeWorkerPanic", func() {
panic("failpoint triggered")
})
failpoint.Inject("mockAnalyzeMergeWorkerSlowConsume", func(val failpoint.Value) {
times := val.(int)
for i := 0; i < times; i++ {
e.memTracker.Consume(5 << 20)
time.Sleep(100 * time.Millisecond)
}
})
retCollector := statistics.NewRowSampleCollector(int(e.analyzePB.ColReq.SampleSize), e.analyzePB.ColReq.GetSampleRate(), l)
for i := 0; i < l; i++ {
retCollector.Base().FMSketches = append(retCollector.Base().FMSketches, statistics.NewFMSketch(maxSketchSize))
}
for {
data, ok := <-taskCh
if !ok {
break
}
dataSize := int64(cap(data))
colResp := &tipb.AnalyzeColumnsResp{}
err := colResp.Unmarshal(data)
if err != nil {
resultCh <- &samplingMergeResult{err: err}
return
}
colRespSize := int64(colResp.Size())
e.memTracker.Consume(colRespSize)
subCollector := statistics.NewRowSampleCollector(int(e.analyzePB.ColReq.SampleSize), e.analyzePB.ColReq.GetSampleRate(), l)
subCollector.Base().FromProto(colResp.RowCollector, e.memTracker)
UpdateAnalyzeJob(e.ctx, e.job, subCollector.Base().Count)
oldRetCollectorSize := retCollector.Base().MemSize
oldRetCollectorCount := retCollector.Base().Count
retCollector.MergeCollector(subCollector)
newRetCollectorCount := retCollector.Base().Count
printAnalyzeMergeCollectorLog(oldRetCollectorCount, newRetCollectorCount, subCollector.Base().Count,
e.tableID.TableID, e.tableID.PartitionID, e.TableID.IsPartitionTable(),
"merge subCollector in concurrency in AnalyzeColumnsExecV2", index)
newRetCollectorSize := retCollector.Base().MemSize
subCollectorSize := subCollector.Base().MemSize
e.memTracker.Consume(newRetCollectorSize - oldRetCollectorSize - subCollectorSize)
e.memTracker.Release(dataSize + colRespSize)
}
resultCh <- &samplingMergeResult{collector: retCollector}
}
func (e *AnalyzeColumnsExecV2) subBuildWorker(resultCh chan error, taskCh chan *samplingBuildTask, hists []*statistics.Histogram, topns []*statistics.TopN, collectors []*statistics.SampleCollector, exitCh chan struct{}) {
defer func() {
if r := recover(); r != nil {
logutil.BgLogger().Error("analyze worker panicked", zap.Any("recover", r), zap.Stack("stack"))
metrics.PanicCounter.WithLabelValues(metrics.LabelAnalyze).Inc()
resultCh <- getAnalyzePanicErr(r)
}
}()
failpoint.Inject("mockAnalyzeSamplingBuildWorkerPanic", func() {
panic("failpoint triggered")
})
colLen := len(e.colsInfo)
bufferedMemSize := int64(0)
bufferedReleaseSize := int64(0)
defer e.memTracker.Consume(bufferedMemSize)
defer e.memTracker.Release(bufferedReleaseSize)
workLoop:
for {
select {
case task, ok := <-taskCh:
if !ok {
break workLoop
}
var collector *statistics.SampleCollector
if task.isColumn {
if e.colsInfo[task.slicePos].IsGenerated() && !e.colsInfo[task.slicePos].GeneratedStored {
hists[task.slicePos] = nil
topns[task.slicePos] = nil
continue
}
sampleNum := task.rootRowCollector.Base().Samples.Len()
sampleItems := make([]*statistics.SampleItem, 0, sampleNum)
// consume mandatory memory at the beginning, including empty SampleItems of all sample rows, if exceeds, fast fail
collectorMemSize := int64(sampleNum) * (8 + statistics.EmptySampleItemSize)
e.memTracker.Consume(collectorMemSize)
var collator collate.Collator
ft := e.colsInfo[task.slicePos].FieldType
// When it's new collation data, we need to use its collate key instead of original value because only
// the collate key can ensure the correct ordering.
// This is also corresponding to similar operation in (*statistics.Column).GetColumnRowCount().
if ft.EvalType() == types.ETString && ft.GetType() != mysql.TypeEnum && ft.GetType() != mysql.TypeSet {
collator = collate.GetCollator(ft.GetCollate())
}
for j, row := range task.rootRowCollector.Base().Samples {
if row.Columns[task.slicePos].IsNull() {
continue
}
val := row.Columns[task.slicePos]
// If this value is very big, we think that it is not a value that can occur many times. So we don't record it.
if len(val.GetBytes()) > statistics.MaxSampleValueLength {
continue
}
if collator != nil {
val.SetBytes(collator.Key(val.GetString()))
deltaSize := int64(cap(val.GetBytes()))
collectorMemSize += deltaSize
e.memTracker.BufferedConsume(&bufferedMemSize, deltaSize)
}
sampleItems = append(sampleItems, &statistics.SampleItem{
Value: val,
Ordinal: j,
})
// tmp memory usage
deltaSize := val.MemUsage() + 4 // content of SampleItem is copied
e.memTracker.BufferedConsume(&bufferedMemSize, deltaSize)
e.memTracker.BufferedRelease(&bufferedReleaseSize, deltaSize)
}
collector = &statistics.SampleCollector{
Samples: sampleItems,
NullCount: task.rootRowCollector.Base().NullCount[task.slicePos],
Count: task.rootRowCollector.Base().Count - task.rootRowCollector.Base().NullCount[task.slicePos],
FMSketch: task.rootRowCollector.Base().FMSketches[task.slicePos],
TotalSize: task.rootRowCollector.Base().TotalSizes[task.slicePos],
MemSize: collectorMemSize,
}
} else {
var tmpDatum types.Datum
var err error
idx := e.indexes[task.slicePos-colLen]
sampleNum := task.rootRowCollector.Base().Samples.Len()
sampleItems := make([]*statistics.SampleItem, 0, sampleNum)
// consume mandatory memory at the beginning, including all SampleItems, if exceeds, fast fail
// 8 is size of reference, 8 is the size of "b := make([]byte, 0, 8)"
collectorMemSize := int64(sampleNum) * (8 + statistics.EmptySampleItemSize + 8)
e.memTracker.Consume(collectorMemSize)
indexSampleCollectLoop:
for _, row := range task.rootRowCollector.Base().Samples {
if len(idx.Columns) == 1 && row.Columns[idx.Columns[0].Offset].IsNull() {
continue
}
b := make([]byte, 0, 8)
for _, col := range idx.Columns {
// If the index value contains one value which is too long, we think that it's a value that doesn't occur many times.
if len(row.Columns[col.Offset].GetBytes()) > statistics.MaxSampleValueLength {
continue indexSampleCollectLoop
}
if col.Length != types.UnspecifiedLength {
row.Columns[col.Offset].Copy(&tmpDatum)
ranger.CutDatumByPrefixLen(&tmpDatum, col.Length, &e.colsInfo[col.Offset].FieldType)
b, err = codec.EncodeKey(e.ctx.GetSessionVars().StmtCtx, b, tmpDatum)
if err != nil {
resultCh <- err
continue workLoop
}
continue
}
b, err = codec.EncodeKey(e.ctx.GetSessionVars().StmtCtx, b, row.Columns[col.Offset])
if err != nil {
resultCh <- err
continue workLoop
}
}
sampleItems = append(sampleItems, &statistics.SampleItem{
Value: types.NewBytesDatum(b),
})
// tmp memory usage
deltaSize := sampleItems[len(sampleItems)-1].Value.MemUsage()
e.memTracker.BufferedConsume(&bufferedMemSize, deltaSize)
e.memTracker.BufferedRelease(&bufferedReleaseSize, deltaSize)
}
collector = &statistics.SampleCollector{
Samples: sampleItems,
NullCount: task.rootRowCollector.Base().NullCount[task.slicePos],
Count: task.rootRowCollector.Base().Count - task.rootRowCollector.Base().NullCount[task.slicePos],
FMSketch: task.rootRowCollector.Base().FMSketches[task.slicePos],
TotalSize: task.rootRowCollector.Base().TotalSizes[task.slicePos],
MemSize: collectorMemSize,
}
}
if task.isColumn {
collectors[task.slicePos] = collector
}
releaseCollectorMemory := func() {
if !task.isColumn {
e.memTracker.Release(collector.MemSize)
}
}
hist, topn, err := statistics.BuildHistAndTopN(e.ctx, int(e.opts[ast.AnalyzeOptNumBuckets]), int(e.opts[ast.AnalyzeOptNumTopN]), task.id, collector, task.tp, task.isColumn, e.memTracker)
if err != nil {
resultCh <- err
releaseCollectorMemory()
continue
}
finalMemSize := hist.MemoryUsage() + topn.MemoryUsage()
e.memTracker.Consume(finalMemSize)
hists[task.slicePos] = hist
topns[task.slicePos] = topn
resultCh <- nil
releaseCollectorMemory()
case <-exitCh:
return
}
}
}
type analyzeIndexNDVTotalResult struct {
results map[int64]*statistics.AnalyzeResults
err error
}
type samplingMergeResult struct {
collector statistics.RowSampleCollector
err error
}
type samplingBuildTask struct {
id int64
rootRowCollector statistics.RowSampleCollector
tp *types.FieldType
isColumn bool
slicePos int
}
func readDataAndSendTask(ctx sessionctx.Context, handler *tableResultHandler, mergeTaskCh chan []byte, memTracker *memory.Tracker) error {
defer close(mergeTaskCh)
for {
failpoint.Inject("mockKillRunningV2AnalyzeJob", func() {
dom := domain.GetDomain(ctx)
dom.SysProcTracker().KillSysProcess(util.GetAutoAnalyzeProcID(dom.ServerID))
})
if atomic.LoadUint32(&ctx.GetSessionVars().Killed) == 1 {
return errors.Trace(ErrQueryInterrupted)
}
failpoint.Inject("mockSlowAnalyzeV2", func() {
time.Sleep(1000 * time.Second)
})
data, err := handler.nextRaw(context.TODO())
if err != nil {
return errors.Trace(err)
}
if data == nil {
break
}
memTracker.Consume(int64(cap(data)))
mergeTaskCh <- data
}
return nil
}