forked from eladhoffer/seq2seq.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·286 lines (259 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import os
import json
import logging
from ast import literal_eval
from datetime import datetime
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from seq2seq import models, datasets
from seq2seq.tools.utils.log import setup_logging
from seq2seq.tools.utils.misc import set_global_seeds, torch_dtypes
from seq2seq.tools.config import PAD
import seq2seq.tools.trainer as trainers
parser = argparse.ArgumentParser(description='PyTorch Seq2Seq Training')
parser.add_argument('--config-file', default=None,
help='json configuration file')
parser.add_argument('--dataset', metavar='DATASET', default='WMT16_de_en',
choices=datasets.__all__,
help='dataset used: ' +
' | '.join(datasets.__all__) +
' (default: WMT16_de_en)')
parser.add_argument('--dataset-dir', metavar='DATASET_DIR',
help='dataset dir')
parser.add_argument('--data-config',
default="{'tokenization':'bpe', 'num_symbols':32000, 'shared_vocab':True}",
help='data configuration')
parser.add_argument('--results-dir', metavar='RESULTS_DIR', default='./results',
help='results dir')
parser.add_argument('--save', metavar='SAVE', default='',
help='saved folder')
parser.add_argument('--model', metavar='MODEL', default='RecurrentAttentionSeq2Seq',
choices=models.__all__,
help='model architecture: ' +
' | '.join(models.__all__) +
' (default: RecurrentAttentionSeq2Seq)')
parser.add_argument('--model-config', default="{'hidden_size:256','num_layers':2}",
help='architecture configuration')
parser.add_argument('--device-ids', default='0',
help='device ids assignment (e.g "0,1", {"encoder":0, "decoder":1})')
parser.add_argument('--device', default='cuda',
help='device assignment ("cpu" or "cuda")')
parser.add_argument('--trainer', metavar='TRAINER', default='Seq2SeqTrainer',
choices=trainers.__all__,
help='trainer used: ' +
' | '.join(trainers.__all__) +
' (default: Seq2SeqTrainer)')
parser.add_argument('--dtype', default='float',
help='type of tensor: ' +
' | '.join(torch_dtypes.keys()) +
' (default: float)')
parser.add_argument('-j', '--workers', default=8, type=int,
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=100, type=int,
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=None, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=32, type=int,
help='mini-batch size (default: 32)')
parser.add_argument('--keep-checkpoints', default=10, type=int,
help='checkpoints to save')
parser.add_argument('--eval-batch-size', default=None, type=int,
help='mini-batch size used for evaluation (default: batch-size)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int,
help='rank of distributed processes')
parser.add_argument('--dist-init', default='env://', type=str,
help='init used to set up distributed training')
parser.add_argument('--target-forcing', default='teacher', type=str,
help='decoder input-to-output forcing')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--optimization-config',
default="[{'epoch':0, 'optimizer':'SGD', 'lr':0.1, 'momentum':0.9}]",
type=str, metavar='OPT',
help='optimization regime used')
parser.add_argument('--print-freq', default=50, type=int,
help='print frequency in iterations(default: 50)')
parser.add_argument('--save-freq', default=600, type=int,
help='save frequency in seconds(default: 600)')
parser.add_argument('--eval-freq', default=2500, type=int,
help='evaluation frequency in iterations(default: 2500)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', type=str, metavar='FILE',
help='evaluate model FILE on validation set')
parser.add_argument('--grad-clip', default='-1.', type=str,
help='maximum grad norm value. negative for off')
parser.add_argument('--embedding-grad-clip', default=None, type=float,
help='maximum embedding grad norm value')
parser.add_argument('--loss-scale', default=1, type=float,
help='loss scale for mixed precision training.')
parser.add_argument('--label-smoothing', default=0, type=float,
help='label smoothing coefficient - default 0')
parser.add_argument('--uniform-init', default=None, type=float,
help='if value not None - init weights to U(-value,value)')
parser.add_argument('--max-length', default=None, type=int,
help='maximum sequence length')
parser.add_argument('--max-tokens', default=None, type=int,
help='maximum sequence tokens -- batch is trimmed if exceeded')
parser.add_argument('--fixed-length', default=None, type=int,
help='fixed sequence length')
parser.add_argument('--chunk-batch', default=1, type=int,
help='chunk batch size for multiple passes (training) -- used to fit large batches in memory')
parser.add_argument('--duplicates', default=1, type=int,
help='number of duplicates over singel example')
parser.add_argument('--seed', default=123, type=int,
help='random seed (default: 123)')
parser.add_argument('--tensorwatch', action='store_true', default=False,
help='set tensorwatch logging')
parser.add_argument('--tensorwatch-port', default=0, type=int,
help='set tensorwatch port')
def main(args):
set_global_seeds(args.seed)
time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
args.distributed = args.local_rank >= 0 or args.world_size > 1
if args.distributed:
args.device_ids = args.local_rank
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_init,
world_size=args.world_size, rank=args.local_rank)
else:
args.device_ids = literal_eval(args.device_ids)
main_node = not (args.distributed and torch.distributed.get_rank() > 0)
if args.evaluate:
args.results_dir = '/tmp'
if args.save is '':
args.save = time_stamp
save_path = os.path.join(args.results_dir, args.save)
if main_node and not os.path.exists(save_path):
os.makedirs(save_path)
setup_logging(os.path.join(save_path, 'log.txt'),
dummy=not main_node)
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
device = args.device
dtype = torch_dtypes.get(args.dtype)
if 'cuda' in args.device:
main_gpu = 0
if isinstance(args.device_ids, tuple):
main_gpu = args.device_ids[0]
elif isinstance(args.device_ids, int):
main_gpu = args.device_ids
elif isinstance(args.device_ids, dict):
main_gpu = args.device_ids.get('input', 0)
torch.cuda.set_device(main_gpu)
cudnn.benchmark = True
device = torch.device(device, main_gpu)
dataset = getattr(datasets, args.dataset)
args.data_config = literal_eval(args.data_config)
args.grad_clip = literal_eval(args.grad_clip)
train_data = dataset(args.dataset_dir, split='train', **args.data_config)
val_data = dataset(args.dataset_dir, split='dev', **args.data_config)
src_tok, target_tok = train_data.tokenizers.values()
regime = literal_eval(args.optimization_config)
model_config = literal_eval(args.model_config)
model_config.setdefault('encoder', {})
model_config.setdefault('decoder', {})
if hasattr(src_tok, 'vocab_size'):
model_config['encoder']['vocab_size'] = src_tok.vocab_size
model_config['decoder']['vocab_size'] = target_tok.vocab_size
model_config['vocab_size'] = model_config['decoder']['vocab_size']
args.model_config = model_config
model = getattr(models, args.model)(**model_config)
model.to(device, dtype=dtype)
batch_first = getattr(model, 'batch_first', False)
logging.info(model)
pack_encoder_inputs = getattr(model.encoder, 'pack_inputs', False)
# define data loaders
if args.distributed:
train_sampler = DistributedSampler(train_data)
else:
train_sampler = None
train_loader = train_data.get_loader(batch_size=args.batch_size,
batch_first=batch_first,
shuffle=train_sampler is None,
sampler=train_sampler,
pack=pack_encoder_inputs,
max_length=args.max_length,
fixed_length=args.fixed_length,
num_workers=args.workers,
drop_last=True)
val_loader = val_data.get_loader(batch_size=args.eval_batch_size or args.batch_size,
batch_first=batch_first,
shuffle=False,
pack=pack_encoder_inputs,
max_length=args.max_length,
fixed_length=args.fixed_length,
num_workers=args.workers)
trainer_options = dict(
grad_clip=args.grad_clip,
embedding_grad_clip=args.embedding_grad_clip,
label_smoothing=args.label_smoothing,
save_path=save_path,
save_info={'tokenizers': train_data.tokenizers,
'config': args},
regime=regime,
target_forcing=args.target_forcing,
keep_checkpoints=args.keep_checkpoints,
max_tokens=args.max_tokens,
chunk_batch=args.chunk_batch,
duplicates=args.duplicates,
distributed=args.distributed,
local_rank=args.local_rank,
device_ids=args.device_ids,
device=device,
dtype=args.dtype,
loss_scale=args.loss_scale,
print_freq=args.print_freq,
save_freq=args.save_freq,
eval_freq=args.eval_freq)
trainer_options['model'] = model
trainer = getattr(trainers, args.trainer)(**trainer_options)
if args.tensorwatch:
trainer.set_watcher(filename=os.path.abspath(os.path.join(save_path, 'tensorwatch.log')),
port=args.tensorwatch_port)
def num_parameters(model):
return 0 if model is None else sum([l.nelement() for l in model.parameters()])
logging.info("\nEncoder - number of parameters: %d",
num_parameters(getattr(model, 'encoder', None)))
logging.info("Decoder - number of parameters: %d",
num_parameters(getattr(model, 'decoder', None)))
logging.info("Total number of parameters: %d\n", num_parameters(model))
if args.uniform_init is not None:
for param in model.parameters():
param.data.uniform_(args.uniform_init, -args.uniform_init)
# optionally resume from a checkpoint
if args.evaluate:
trainer.load(args.evaluate)
trainer.evaluate(val_loader)
return
elif args.resume:
checkpoint_file = args.resume
if os.path.isdir(checkpoint_file):
checkpoint_file = os.path.join(
checkpoint_file, 'model_best.pth.tar')
if os.path.isfile(checkpoint_file):
trainer.load(checkpoint_file)
else:
logging.error("no checkpoint found at '%s'", args.resume)
logging.info('training regime: %s\n', regime)
if args.start_epoch:
trainer.epoch = args.start_epoch
while trainer.epoch < args.epochs:
# train for one epoch
trainer.run(train_loader, val_loader)
if __name__ == '__main__':
args = parser.parse_args()
if args.config_file is not None:
with open(args.config_file) as f:
config_dict = json.loads(f.read())
parser.set_defaults(**config_dict)
args = parser.parse_args()
main(args)