|
| 1 | +using Microsoft.ML; |
| 2 | +using Microsoft.ML.Core.Data; |
| 3 | +using Microsoft.ML.Runtime.Api; |
| 4 | +using Microsoft.ML.Runtime.Data; |
| 5 | +using Microsoft.ML.Runtime.KMeans; |
| 6 | +using Microsoft.ML.Runtime.Learners; |
| 7 | +using System; |
| 8 | +using System.IO; |
| 9 | + |
| 10 | +namespace Clustering_Iris |
| 11 | +{ |
| 12 | + internal static class Program |
| 13 | + { |
| 14 | + private static string AppPath => Path.GetDirectoryName(Environment.GetCommandLineArgs()[0]); |
| 15 | + private static string DataPath => Path.Combine(AppPath, "datasets", "iris-full.txt"); |
| 16 | + private static string ModelPath => Path.Combine(AppPath, "IrisModel.zip"); |
| 17 | + |
| 18 | + |
| 19 | + private static void Main(string[] args) |
| 20 | + { |
| 21 | + // Create ML.NET context/environment |
| 22 | + using (var env = new LocalEnvironment()) |
| 23 | + { |
| 24 | + // Create DataReader with data schema mapped to file's columns |
| 25 | + var reader = new TextLoader(env, |
| 26 | + new TextLoader.Arguments() |
| 27 | + { |
| 28 | + Separator = "\t", |
| 29 | + HasHeader = true, |
| 30 | + Column = new[] |
| 31 | + { |
| 32 | + new TextLoader.Column("Label", DataKind.R4, 0), |
| 33 | + new TextLoader.Column("SepalLength", DataKind.R4, 1), |
| 34 | + new TextLoader.Column("SepalWidth", DataKind.R4, 2), new TextLoader.Column("SepalWidth", DataKind.R4, 2), |
| 35 | + new TextLoader.Column("PetalLength", DataKind.R4, 3), |
| 36 | + new TextLoader.Column("PetalWidth", DataKind.R4, 4), |
| 37 | + |
| 38 | + } |
| 39 | + }); |
| 40 | + //Load training data |
| 41 | + IDataView trainingDataView = reader.Read(new MultiFileSource(DataPath)); |
| 42 | + |
| 43 | + // Transform your data and add a learner |
| 44 | + // Add a learning algorithm to the pipeline. e.g.(What are characteristics of iris is this?) |
| 45 | + // Convert the Label back into original text (after converting to number in step 3) |
| 46 | + var pipeline = new ConcatEstimator(env, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth") |
| 47 | + .Append(new KMeansPlusPlusTrainer(env, "Features",clustersCount:3)); |
| 48 | + |
| 49 | + // Create and train the model |
| 50 | + Console.WriteLine("=============== Create and Train the Model ==============="); |
| 51 | + |
| 52 | + var model = pipeline.Fit(trainingDataView); |
| 53 | + |
| 54 | + Console.WriteLine("=============== End of training ==============="); |
| 55 | + Console.WriteLine(); |
| 56 | + |
| 57 | + // Test with one sample text |
| 58 | + var sampleIrisData = new IrisData() |
| 59 | + { |
| 60 | + SepalLength = 3.3f, |
| 61 | + SepalWidth = 1.6f, |
| 62 | + PetalLength = 0.2f, |
| 63 | + PetalWidth = 5.1f, |
| 64 | + }; |
| 65 | + |
| 66 | + var prediction = model.MakePredictionFunction<IrisData, IrisPrediction>(env).Predict( |
| 67 | + sampleIrisData); |
| 68 | + |
| 69 | + Console.WriteLine($"Clusters assigned for setosa flowers:"+prediction.SelectedClusterId); |
| 70 | + // Save model to .ZIP file |
| 71 | + SaveModelAsFile(env, model); |
| 72 | + |
| 73 | + // Predict again but now testing the model loading from the .ZIP file |
| 74 | + PredictWithModelLoadedFromFile(sampleIrisData); |
| 75 | + |
| 76 | + Console.WriteLine("=============== End of process, hit any key to finish ==============="); |
| 77 | + Console.ReadKey(); |
| 78 | + } |
| 79 | + |
| 80 | + |
| 81 | + } |
| 82 | + |
| 83 | + private static void SaveModelAsFile(LocalEnvironment env, TransformerChain<ClusteringPredictionTransformer<KMeansPredictor>> model) |
| 84 | + { |
| 85 | + using (var fs = new FileStream(ModelPath, FileMode.Create, FileAccess.Write, FileShare.Write)) |
| 86 | + model.SaveTo(env, fs); |
| 87 | + |
| 88 | + Console.WriteLine("The model is saved to {0}", ModelPath); |
| 89 | + } |
| 90 | + |
| 91 | + private static void PredictWithModelLoadedFromFile(IrisData sampleData) |
| 92 | + { |
| 93 | + // Test with Loaded Model from .zip file |
| 94 | + |
| 95 | + using (var env = new LocalEnvironment()) |
| 96 | + { |
| 97 | + ITransformer loadedModel; |
| 98 | + using (var stream = new FileStream(ModelPath, FileMode.Open, FileAccess.Read, FileShare.Read)) |
| 99 | + { |
| 100 | + loadedModel = TransformerChain.LoadFrom(env, stream); |
| 101 | + } |
| 102 | + |
| 103 | + // Create prediction engine and make prediction. |
| 104 | + var prediction = loadedModel.MakePredictionFunction<IrisData, IrisPrediction>(env).Predict( |
| 105 | + new IrisData() |
| 106 | + { |
| 107 | + SepalLength = 3.3f, |
| 108 | + SepalWidth = 1.6f, |
| 109 | + PetalLength = 0.2f, |
| 110 | + PetalWidth = 5.1f, |
| 111 | + }); |
| 112 | + |
| 113 | + Console.WriteLine(); |
| 114 | + Console.WriteLine($"Clusters assigned for setosa flowers:" + prediction.SelectedClusterId); |
| 115 | + } |
| 116 | + } |
| 117 | + |
| 118 | + } |
| 119 | + |
| 120 | + |
| 121 | + |
| 122 | + // Define your data structures |
| 123 | + public class IrisData |
| 124 | + { |
| 125 | + [Column("0")] |
| 126 | + public float Label; |
| 127 | + |
| 128 | + [Column("1")] |
| 129 | + public float SepalLength; |
| 130 | + |
| 131 | + [Column("2")] |
| 132 | + public float SepalWidth; |
| 133 | + |
| 134 | + [Column("3")] |
| 135 | + public float PetalLength; |
| 136 | + |
| 137 | + [Column("4")] |
| 138 | + public float PetalWidth; |
| 139 | + |
| 140 | + } |
| 141 | + |
| 142 | + // IrisPrediction is the result returned from prediction operations |
| 143 | + public class IrisPrediction |
| 144 | + { |
| 145 | + [ColumnName("PredictedLabel")] |
| 146 | + public uint SelectedClusterId; |
| 147 | + |
| 148 | + [ColumnName("Score")] |
| 149 | + public float[] Distance; |
| 150 | + } |
| 151 | +} |
0 commit comments