You are given a array points
representing integer coordinates of some points on a 2D plane, where points[i] = [xi, yi]
.
The distance between two points is defined as their Manhattan distance.
Return the minimum possible value for maximum distance between any two points by removing exactly one point.
Example 1:
Input: points = [[3,10],[5,15],[10,2],[4,4]]
Output: 12
Explanation:
The maximum distance after removing each point is the following:
- After removing the 0th point the maximum distance is between points (5, 15) and (10, 2), which is
|5 - 10| + |15 - 2| = 18
. - After removing the 1st point the maximum distance is between points (3, 10) and (10, 2), which is
|3 - 10| + |10 - 2| = 15
. - After removing the 2nd point the maximum distance is between points (5, 15) and (4, 4), which is
|5 - 4| + |15 - 4| = 12
. - After removing the 3rd point the maximum distance is between points (5, 15) and (10, 2), which is
|5 - 10| + |15 - 2| = 18
.
12 is the minimum possible maximum distance between any two points after removing exactly one point.
Example 2:
Input: points = [[1,1],[1,1],[1,1]]
Output: 0
Explanation:
Removing any of the points results in the maximum distance between any two points of 0.
Constraints:
3 <= points.length <= 105
points[i].length == 2
1 <= points[i][0], points[i][1] <= 108
from sortedcontainers import SortedList
class Solution:
def minimumDistance(self, points: List[List[int]]) -> int:
sl1 = SortedList()
sl2 = SortedList()
for x, y in points:
sl1.add(x + y)
sl2.add(x - y)
ans = inf
for x, y in points:
sl1.remove(x + y)
sl2.remove(x - y)
ans = min(ans, max(sl1[-1] - sl1[0], sl2[-1] - sl2[0]))
sl1.add(x + y)
sl2.add(x - y)
return ans
class Solution {
public int minimumDistance(int[][] points) {
TreeMap<Integer, Integer> tm1 = new TreeMap<>();
TreeMap<Integer, Integer> tm2 = new TreeMap<>();
for (int[] p : points) {
int x = p[0], y = p[1];
tm1.merge(x + y, 1, Integer::sum);
tm2.merge(x - y, 1, Integer::sum);
}
int ans = Integer.MAX_VALUE;
for (int[] p : points) {
int x = p[0], y = p[1];
if (tm1.merge(x + y, -1, Integer::sum) == 0) {
tm1.remove(x + y);
}
if (tm2.merge(x - y, -1, Integer::sum) == 0) {
tm2.remove(x - y);
}
ans = Math.min(
ans, Math.max(tm1.lastKey() - tm1.firstKey(), tm2.lastKey() - tm2.firstKey()));
tm1.merge(x + y, 1, Integer::sum);
tm2.merge(x - y, 1, Integer::sum);
}
return ans;
}
}
class Solution {
public:
int minimumDistance(vector<vector<int>>& points) {
multiset<int> st1;
multiset<int> st2;
for (auto& p : points) {
int x = p[0], y = p[1];
st1.insert(x + y);
st2.insert(x - y);
}
int ans = INT_MAX;
for (auto& p : points) {
int x = p[0], y = p[1];
st1.erase(st1.find(x + y));
st2.erase(st2.find(x - y));
ans = min(ans, max(*st1.rbegin() - *st1.begin(), *st2.rbegin() - *st2.begin()));
st1.insert(x + y);
st2.insert(x - y);
}
return ans;
}
};
func minimumDistance(points [][]int) int {
st1 := redblacktree.New[int, int]()
st2 := redblacktree.New[int, int]()
merge := func(st *redblacktree.Tree[int, int], x, v int) {
c, _ := st.Get(x)
if c+v == 0 {
st.Remove(x)
} else {
st.Put(x, c+v)
}
}
for _, p := range points {
x, y := p[0], p[1]
merge(st1, x+y, 1)
merge(st2, x-y, 1)
}
ans := math.MaxInt
for _, p := range points {
x, y := p[0], p[1]
merge(st1, x+y, -1)
merge(st2, x-y, -1)
ans = min(ans, max(st1.Right().Key-st1.Left().Key, st2.Right().Key-st2.Left().Key))
merge(st1, x+y, 1)
merge(st2, x-y, 1)
}
return ans
}