Skip to content

Latest commit

 

History

History
171 lines (140 loc) · 5.17 KB

File metadata and controls

171 lines (140 loc) · 5.17 KB

中文文档

Description

You are given a array points representing integer coordinates of some points on a 2D plane, where points[i] = [xi, yi].

The distance between two points is defined as their Manhattan distance.

Return the minimum possible value for maximum distance between any two points by removing exactly one point.

 

Example 1:

Input: points = [[3,10],[5,15],[10,2],[4,4]]

Output: 12

Explanation:

The maximum distance after removing each point is the following:

  • After removing the 0th point the maximum distance is between points (5, 15) and (10, 2), which is |5 - 10| + |15 - 2| = 18.
  • After removing the 1st point the maximum distance is between points (3, 10) and (10, 2), which is |3 - 10| + |10 - 2| = 15.
  • After removing the 2nd point the maximum distance is between points (5, 15) and (4, 4), which is |5 - 4| + |15 - 4| = 12.
  • After removing the 3rd point the maximum distance is between points (5, 15) and (10, 2), which is |5 - 10| + |15 - 2| = 18.

12 is the minimum possible maximum distance between any two points after removing exactly one point.

Example 2:

Input: points = [[1,1],[1,1],[1,1]]

Output: 0

Explanation:

Removing any of the points results in the maximum distance between any two points of 0.

 

Constraints:

  • 3 <= points.length <= 105
  • points[i].length == 2
  • 1 <= points[i][0], points[i][1] <= 108

Solutions

Solution 1

from sortedcontainers import SortedList


class Solution:
    def minimumDistance(self, points: List[List[int]]) -> int:
        sl1 = SortedList()
        sl2 = SortedList()
        for x, y in points:
            sl1.add(x + y)
            sl2.add(x - y)
        ans = inf
        for x, y in points:
            sl1.remove(x + y)
            sl2.remove(x - y)
            ans = min(ans, max(sl1[-1] - sl1[0], sl2[-1] - sl2[0]))
            sl1.add(x + y)
            sl2.add(x - y)
        return ans
class Solution {
    public int minimumDistance(int[][] points) {
        TreeMap<Integer, Integer> tm1 = new TreeMap<>();
        TreeMap<Integer, Integer> tm2 = new TreeMap<>();
        for (int[] p : points) {
            int x = p[0], y = p[1];
            tm1.merge(x + y, 1, Integer::sum);
            tm2.merge(x - y, 1, Integer::sum);
        }
        int ans = Integer.MAX_VALUE;
        for (int[] p : points) {
            int x = p[0], y = p[1];
            if (tm1.merge(x + y, -1, Integer::sum) == 0) {
                tm1.remove(x + y);
            }
            if (tm2.merge(x - y, -1, Integer::sum) == 0) {
                tm2.remove(x - y);
            }
            ans = Math.min(
                ans, Math.max(tm1.lastKey() - tm1.firstKey(), tm2.lastKey() - tm2.firstKey()));
            tm1.merge(x + y, 1, Integer::sum);
            tm2.merge(x - y, 1, Integer::sum);
        }
        return ans;
    }
}
class Solution {
public:
    int minimumDistance(vector<vector<int>>& points) {
        multiset<int> st1;
        multiset<int> st2;
        for (auto& p : points) {
            int x = p[0], y = p[1];
            st1.insert(x + y);
            st2.insert(x - y);
        }
        int ans = INT_MAX;
        for (auto& p : points) {
            int x = p[0], y = p[1];
            st1.erase(st1.find(x + y));
            st2.erase(st2.find(x - y));
            ans = min(ans, max(*st1.rbegin() - *st1.begin(), *st2.rbegin() - *st2.begin()));
            st1.insert(x + y);
            st2.insert(x - y);
        }
        return ans;
    }
};
func minimumDistance(points [][]int) int {
	st1 := redblacktree.New[int, int]()
	st2 := redblacktree.New[int, int]()
	merge := func(st *redblacktree.Tree[int, int], x, v int) {
		c, _ := st.Get(x)
		if c+v == 0 {
			st.Remove(x)
		} else {
			st.Put(x, c+v)
		}
	}
	for _, p := range points {
		x, y := p[0], p[1]
		merge(st1, x+y, 1)
		merge(st2, x-y, 1)
	}
	ans := math.MaxInt
	for _, p := range points {
		x, y := p[0], p[1]
		merge(st1, x+y, -1)
		merge(st2, x-y, -1)
		ans = min(ans, max(st1.Right().Key-st1.Left().Key, st2.Right().Key-st2.Left().Key))
		merge(st1, x+y, 1)
		merge(st2, x-y, 1)
	}
	return ans
}