-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflat.go
368 lines (344 loc) · 7.94 KB
/
flat.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright 2020 Daniel S. Fava. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cube
import (
"bufio"
"errors"
"fmt"
"log"
"math"
"os"
"strings"
)
// Flat is a data-structure that makes it easy to represent a cube
// as a string (for example, when printing it to the screen).
//
// Flat is a representation in which the cube is "opened up" and
// flattened into two dimensions.
//
// A cube of size n^3 is flattened into a 2D matrix of size (3*n)x(4*n).
//
// For example, the Rubik's cube, which is of size n=3^3, is flattened
// into a 9x12 matrix. Below we show a picture of the flattened Rubik's
// cube. The key for reading the picture below is:
//
// u for `up`
// l for `left`
// c for `center`
// r for `right`
// b for `back`
// d for `down`
// . is unused (it does not represent any part of the 3D cube)
//
// . . . u u u . . . . . .
// . . . u u u . . . . . .
// . . . u u u . . . . . .
// l l l c c c r r r b b b
// l l l c c c r r r b b b
// l l l c c c r r r b b b
// . . . d d d . . . . . .
// . . . d d d . . . . . .
// . . . d d d . . . . . .
type Flat [][]string
func (fl Flat) String() string {
n := len(fl) / 3
str := ""
for r := 0; r < n*3; r++ {
c := 0
for ; c < n*4; c++ {
if c != 0 && c != n*4 && c%n == 0 {
if r > (n-1) && r < 2*n {
str += fmt.Sprintf("| ")
} else {
str += fmt.Sprintf(" ")
}
}
if fl[r][c] == "" {
str += fmt.Sprintf("%s ", zero.String())
} else {
str += fmt.Sprintf("%s ", fl[r][c])
}
}
if r != (n*3-1) && c == n*4 {
str += "\n"
}
}
return str
}
const (
row = iota
col
)
const (
neg = -1
pos = 1
)
func sign(x int) int {
if x < 0 {
return neg
}
return pos
}
type projection struct {
axis [2]Axis
offset [2]int
sign [2]int
fun [2]func(float64) float64
fname [2]string
}
// Project down from a side of the cube (specified by an axis and a sign)
// taking the size of the cube (n) into account.
// Returns an offset into a Flat structure and other information
// needed to calculate the projection
func project(n uint, axis Axis, sign bool) projection {
var proj projection
switch axis {
case Xax:
proj.axis[row] = Zax
proj.axis[col] = Yax
if sign {
proj.offset[row] = int(n)
proj.offset[col] = int(n * 2)
proj.sign[row] = neg
proj.sign[col] = neg
} else {
proj.offset[row] = int(n)
proj.offset[col] = 0
proj.sign[row] = neg
proj.sign[col] = pos
}
case Yax:
proj.axis[row] = Zax
proj.axis[col] = Xax
if sign {
proj.offset[row] = int(n)
proj.offset[col] = int(n)
proj.sign[row] = neg
proj.sign[col] = pos
} else {
proj.offset[row] = int(n)
proj.offset[col] = int(n * 3)
proj.sign[row] = neg
proj.sign[col] = neg
}
case Zax:
proj.axis[row] = Yax
proj.axis[col] = Xax
if sign {
proj.offset[row] = 0
proj.offset[col] = int(n)
proj.sign[row] = pos
proj.sign[col] = pos
} else {
proj.offset[row] = int(n * 2)
proj.offset[col] = int(n)
proj.sign[row] = neg
proj.sign[col] = pos
}
}
for _, idx := range [...]int{row, col} {
if proj.sign[idx] == neg {
proj.fun[idx] = math.Ceil
proj.fname[idx] = "Ceil"
} else {
proj.fun[idx] = math.Floor
proj.fname[idx] = "Floor"
}
}
return proj
}
// Populate a Flat structure given a Cubi.
//
// A Cubi is composed of a location in space (captured by a Vec) and
// of a description on how to paint that location (captured by a CVec,
// aka color vector).
//
// We use the Vec and CVec to find the indices in Flat that need to be
// populated, and we use the CVec to determine the string representation
// the location's color.
func (fl *Flat) PaintCubi(cubi Cubi, n uint) {
for _, ax := range [...]Axis{Xax, Yax, Zax} {
if cubi.cv[ax] == 0 {
continue
}
proj := project(n, ax, cubi.cv[ax] > 0)
r := int(n/2) + proj.sign[row]*cubi.pv[proj.axis[row]] + proj.offset[row]
c := int(n/2) + proj.sign[col]*cubi.pv[proj.axis[col]] + proj.offset[col]
if n%2 == 0 {
signArray := [3]float64{
float64(sign(cubi.pv[Xax])),
float64(sign(cubi.pv[Yax])),
float64(sign(cubi.pv[Zax]))}
r += proj.sign[row] * int(proj.fun[row](-signArray[proj.axis[row]]*0.5))
c += proj.sign[col] * int(proj.fun[col](-signArray[proj.axis[col]]*0.5))
}
(*fl)[r][c] = cubi.cv[ax].Abs().String()
}
}
func (fl *Flat) PaintCube(cube Cube) {
(*fl) = make([][]string, cube.n*3)
for idx := range *fl {
(*fl)[idx] = make([]string, cube.n*4)
}
for idx := range cube.cubis {
fl.PaintCubi(cube.cubis[idx], cube.n)
}
}
func (fl *Flat) FromString(cube string) {
// TODO: Implement
}
func (fl *Flat) FromFile(fname string) {
buf, err := os.Open(fname)
if err != nil {
log.Fatal(err)
}
defer func() {
if err = buf.Close(); err != nil {
log.Fatal(err)
}
}()
snl := bufio.NewScanner(buf)
var iterations uint
var n uint
var zeros []string
for snl.Scan() {
colors := func(ss []string) []string { // missing Python right now...
for idx, s := range ss {
if s == "|" {
ss = append(ss[:idx], ss[idx+1:]...)
}
}
return ss
}(strings.Fields(snl.Text()))
if iterations == 0 {
n = uint(len(colors))
(*fl) = make([][]string, n*3)
zeros = func() []string {
ret := make([]string, n)
for i := range ret {
ret[i] = " "
}
return ret
}()
//strings.Fields(strings.Repeat("z ", int(n)))
}
if iterations < n || iterations >= 2*n {
colors = append(append(append(zeros, colors...), zeros...), zeros...)
}
(*fl)[iterations] = colors
iterations += 1
}
err = snl.Err()
if err != nil {
log.Fatal(err)
}
if iterations != n*3 {
log.Fatal(errors.New("invalid cube size"))
}
}
func (fl Flat) Cube() Cube {
debug := false
n := len(fl) / 3
extremity := n / 2
var cube Cube
cube.n = uint(n)
cube.cubis = make([]Cubi, int(math.Pow(float64(n), 3)-math.Pow(float64(n)-2, 3)))
preCube := make(map[Vec]CVec)
for r := 0; r < n*3; r++ {
c := 0
for ; c < n*4; c++ {
if fl[r][c] == " " || fl[r][c] == "" {
continue
}
if debug {
fmt.Println()
fmt.Println(r, c, fl[r][c])
}
var axis Axis
var polarity bool
var pv Vec
var cv CVec
if r < n {
// Size 5 (yellow)
axis = Zax
polarity = true
} else if r >= 2*n {
// Size w (white)
axis = Zax
polarity = false
} else {
// Could be one of sides 4 (red), 1 (green), 3 (orange), or 6 (blue)
if c < n {
// Size 4 (red)
axis = Xax
polarity = false
} else if c < 2*n {
// Size 1 (green)
axis = Yax
polarity = true
} else if c < 3*n {
// Size 3 (orange)
axis = Xax
polarity = true
} else {
// Size 6 (blue)
axis = Yax
polarity = false
}
}
proj := project(uint(n), axis, polarity)
sign := -1
if polarity {
sign = 1
}
cv[axis] = Color(sign * func() int { v, _ := ParseColor(fl[r][c]); return int(v) }())
pv[axis] = sign * extremity
pv[proj.axis[row]] = (r - proj.offset[row] - n/2) * proj.sign[row]
pv[proj.axis[col]] = (c - proj.offset[col] - n/2) * proj.sign[col]
if n%2 == 0 {
rp := r - proj.offset[row]
cp := c - proj.offset[col]
if debug {
if pv[proj.axis[row]] == 0 {
fmt.Println("row:", rp, proj.axis[row], proj.sign[row], proj.fname[row])
}
if pv[proj.axis[col]] == 0 {
fmt.Println("col:", cp, proj.axis[col], proj.sign[col], proj.fname[col])
}
}
if rp >= n/2 {
pv[proj.axis[row]] += proj.sign[row]
}
if cp >= n/2 {
pv[proj.axis[col]] += proj.sign[col]
}
}
if debug {
fmt.Println(axis, polarity)
fmt.Println(pv, cv)
}
cvec, ok := preCube[pv]
if !ok {
if debug {
fmt.Println("Adding", cv, "to", pv)
}
preCube[pv] = cv
} else {
if debug {
fmt.Println("OR'ing", cv, "to", pv)
}
preCube[pv] = cvec.or(cv)
}
}
}
ncubi := 0
for pvec, cvec := range preCube {
if debug {
fmt.Println(pvec, cvec)
}
cube.cubis[ncubi] = Cubi{cv: cvec, pv: pvec}
ncubi += 1
}
return cube
}