-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoulombo.cpp
315 lines (280 loc) · 9.22 KB
/
coulombo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Coulombo Ⓒ 2018
// [Computer Physics Communications] Różański & Zieliński:
// Efficient computation of Coulomb and exchange integrals for multi-million atom nanostructures
#ifdef _OPENMP
#include <omp.h>
#endif
#include <fftw3-mpi.h>
#include <list>
#include <map>
#include <string>
#include <utility>
#include "base.hpp"
#include "mpi.hpp"
#include "throwf.hpp"
#include "Broadcaster.hpp"
#include "Domain.hpp"
#include "CoulombCalculator.hpp"
#include "FunctionCollection.hpp"
#include "Graph.hpp"
#include "Parser.hpp"
#include "Pattern.hpp"
#include "Planner.hpp"
#include "Product.hpp"
#include "Timer.hpp"
#define VERSION "2.0"
//----------------------------------------------------------------------
void coulombo(const ParseResults& pr)
{
Timer timer;
std::string value;
// initialize FFTW
#ifdef _OPENMP
int threadsPerNode = 1;
if (pr.hasValue("threads-per-node", value)) {
threadsPerNode = atoi(value.c_str());
if (threadsPerNode <= 0) {
throwfr("invalid value for threads-per-node");
}
}
omp_set_num_threads(threadsPerNode);
if (threadsPerNode > 1) {
fftw_init_threads();
}
#endif
fftw_mpi_init();
#ifdef _OPENMP
if (threadsPerNode > 1) {
fftw_plan_with_nthreads(threadsPerNode);
}
#endif
timer.start("Reading atom positions");
// initialize input type
int orbitalCount = 20;
if (pr.hasValue("orbitals", value)) {
orbitalCount = atoi(value.c_str());
if (orbitalCount <= 0) {
throwfr("invalid value for orbitals");
}
}
int headerLinesToSkip = 0;
if (pr.hasValue("skip-lines", value)) {
headerLinesToSkip = atoi(value.c_str());
if (headerLinesToSkip <= 0) {
throwfr("invalid value for skip-lines");
}
}
std::shared_ptr<FunctionCollection> functions;
functions.reset(new FunctionCollection(pr.getValue("atoms"), orbitalCount, headerLinesToSkip));
// parse various settings
double dielectric = 1.0;
if (pr.hasValue("dielectric", value)) {
dielectric = atof(value.c_str());
}
std::string integrals = "****";
pr.hasValue("integrals", integrals);
std::string outputDir;
if (pr.hasValue("output-dir", outputDir) && !outputDir.empty()) {
outputDir += '/';
}
timer.start("Reading wavefunctions");
// read input files
int inputCount = pr.getArgCount(), hoStateCount = 0, elStateCount = 0;
if (inputCount >= std::numeric_limits<short>::max()) {
throwfr("too many input files");
}
for (int input = 0; input<inputCount; ++input) {
const std::string arg = pr.getArg(input);
const char* basename = arg.c_str();
auto last_slash = arg.find_last_of('/');
if (last_slash != std::string::npos) {
basename += last_slash + 1;
}
if (basename[0] == 'h') {
if (elStateCount) {
throwfr("hole states must appear before electron states");
}
++hoStateCount;
}
else if (basename[0] == 'e') {
++elStateCount;
}
else {
throwfr("invalid state file name: %s", arg.c_str());
}
functions->appendFile(pr.getArg(input));
}
timer.start("Preparing plan");
Pattern pattern(integrals, hoStateCount);
// generate list of product generators
auto products = functions->createProducts();
// generate list of integrals to be computed
std::shared_ptr<Planner> planner;
if (mpi::root()) {
planner = std::make_shared<MasterPlanner>(products.size());
} else {
planner = std::make_shared<Planner>();
}
int integralCount = 0;
std::vector<std::array<short, 4>> integralSpecs;
if (mpi::root())
for (short i1 = 1; i1<=inputCount; ++i1) {
for (short i2 = 1; i2<=inputCount; ++i2) {
for (short i3 = 1; i3<=inputCount; ++i3) {
for (short i4 = 1; i4<=inputCount; ++i4) {
if (pattern.match(i1, i2, i3, i4)) {
planner->addIntegral(i1, i2, i3, i4);
integralSpecs.push_back({i1, i2, i3, i4});
++integralCount;
}
}
}
}
}
// compute the correct calculation plan
planner->computePlan();
Dimension dimension = functions->getPaddedDimension();
timer.start("Initializing calculator");
// get onsite value
double onsite = 0.0;
if (pr.hasValue("onsite", value)) {
onsite = atof(value.c_str());
}
// initialize dielectric screening model
Vector3D<double> stepXYZ = functions->getStepValues();
std::unique_ptr<Interaction> interaction;
if (pr.hasValue("tf-lattice", value)) {
double latticeConstant = atof(value.c_str());
if (!std::isgreater(latticeConstant, 0.0)) {
throwfr("--tf-lattice parameter must be positive");
}
if (!std::isgreater(dielectric, 1.0)) {
throwfr("dielectric constant must be >1 to use Thomas-Fermi model");
}
interaction.reset( new InteractionThomasFermi(stepXYZ, onsite, dielectric, latticeConstant) );
} else {
interaction.reset( new InteractionSimple(stepXYZ, onsite, dielectric) );
}
// initialize buffers
CoulombCalculator calculator(dimension);
calculator.initialize(*interaction);
timer.start("Computing requested integrals");
// perform the actual computation
complex valueLast;
std::vector<complex> integralValues(integralCount);
int lastLeftProduct = -1;
int lastRightProduct = -1;
unsigned char lastRightConjugate = 0;
PlannerStep step;
while (planner->getNextStep(step)) {
if (step.left.product!=lastLeftProduct) {
products[step.left.product]->map(calculator.input, false);
calculator.prepare();
lastLeftProduct = step.left.product;
}
bool rightConjugate = (step.left.conjugate!=step.right.conjugate);
if (step.right.product!=lastRightProduct || rightConjugate!=lastRightConjugate) {
products[step.right.product]->map(calculator.input, rightConjugate);
lastRightProduct = step.right.product;
lastRightConjugate = rightConjugate;
valueLast = calculator.calculate();
}
if (mpi::root()) {
integralValues[step.id] = step.left.conjugate ? std::conj(valueLast) : valueLast;
}
}
timer.start("Exporting results");
// export results to output files
if (mpi::root()) {
std::map<std::array<short, 4>, complex> values;
for (int i = 0; i<integralCount; ++i) {
const auto& specs = integralSpecs[i];
const complex& value = integralValues[i];
values[specs] = value;
}
char core[5]; core[4] = 0;
for (int ti=0; ti<2; ++ti)
for (int tj=0; tj<2; ++tj)
for (int tk=0; tk<2; ++tk)
for (int tl=0; tl<2; ++tl) {
FILE* file = nullptr;
core[0] = ti ? 'e' : 'h';
core[1] = tj ? 'e' : 'h';
core[2] = tk ? 'e' : 'h';
core[3] = tl ? 'e' : 'h';
unsigned Ni = ti ? elStateCount : hoStateCount;
unsigned Nj = tj ? elStateCount : hoStateCount;
unsigned Nk = tk ? elStateCount : hoStateCount;
unsigned Nl = tl ? elStateCount : hoStateCount;
for (unsigned ni=1; ni<=Ni; ++ni)
for (unsigned nj=1; nj<=Nj; ++nj)
for (unsigned nk=1; nk<=Nk; ++nk)
for (unsigned nl=1; nl<=Nl; ++nl) {
std::array<short, 4> specs;
specs[0] = ti ? hoStateCount + ni : hoStateCount + 1 - ni;
specs[1] = tj ? hoStateCount + nj : hoStateCount + 1 - nj;
specs[2] = tk ? hoStateCount + nk : hoStateCount + 1 - nk;
specs[3] = tl ? hoStateCount + nl : hoStateCount + 1 - nl;
auto it = values.find(specs);
if (it != values.end()) {
if (!file) file = fopen((outputDir + core + ".txt").c_str(), "w");
const complex value = it->second;
fprintf(file, "%2d %2d %2d %2d %17.14f %17.14f\n",
ni, nj, nk, nl, std::real(value), std::imag(value)
);
}
}
if (file) {
fclose(file);
}
}
}
}
int main(int argc, char** argv)
{
try {
mpi::init(argc, argv);
Parser cmd;
cmd.allowValue("atoms");
cmd.allowValue("dielectric");
cmd.allowValue("integrals");
cmd.allowValue("onsite");
cmd.allowValue("orbitals");
cmd.allowValue("output-dir");
cmd.allowValue("skip-lines");
#ifdef _OPENMP
cmd.allowValue("threads-per-node");
#endif
cmd.allowValue("tf-lattice");
ParseResults pr = cmd.process(argc, argv);
if (!pr.getArgCount()) {
fprintf(stderr,
"Coulombo v" VERSION " (c) 2023 [Computer Physics Communications] Rozanski & Zielinski:\n"
"Exploiting underlying crystal lattice for efficient computation of Coulomb matrix elements in multi-million atoms nanostructures\n"
"\nUSAGE:\n"
" coulombo [FLAGS/OPTIONS] data files ...\n"
"\nOPTIONS:\n"
" --atoms=PATH path to *.3d file with atoms' positions\n"
" --dielectric=VALUE dielectric constant, default: 1\n"
" --integrals=LIST comma-separated list of integrals to be computed\n"
" (eg. \"eeee,hhhh,ehhe,eheh\"),\n"
" default: all integrals are computed\n"
" --onsite=ENERGY energy for on-site contribution, default: 0 (eV)\n"
" --orbitals=N number of (spin-)orbitals per atom, default: 20\n"
" --output-dir=DIR directory for output files, default: current\n"
" --skip-lines=N number of lines to be skipped on top of each LCAO file, default: 0\n"
#ifdef _OPENMP
" --threads-per-node=N number of OpenMP threads per node, default: 1\n"
#endif
" --tf-lattice=VALUE lattice constant (Å) for Thomas-Fermi-Resta model,\n"
" default: model not applied\n"
"\n");
exit(EXIT_FAILURE);
}
coulombo(pr);
mpi::finalize();
} catch (std::exception& ex) {
fprintf(stderr, "ERROR: %s\n", ex.what());
exit(EXIT_FAILURE);
}
}