forked from cran/chipPCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamptester.Rd
114 lines (100 loc) · 4.69 KB
/
amptester.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
\name{amptester}
\alias{amptester}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
Amplification test
}
\description{
The function \code{\link[chipPCR]{amptester}} can be used to test if an
amplification is significant.
}
\usage{
amptester(y, manual = FALSE, noiselevel = 0.08, background = NULL)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{y}{
is a vector containing the fluorescence values.
}
\item{manual}{
switches between a statistical test (based on a Student's t-test) or
manual test for a positive amplification signal.
}
\item{noiselevel}{
can be set to a user defined value as threshold for a significant
amplification signal.
}
\item{background}{
is the range of the background signal in the amplification curve. The
values can be added by the used or taken from the
\code{\link[chipPCR]{bg.max}} function.
}
}
\details{
The function tries to estimate if a amplification process is taking place.
To do so a several instances of tests are includes. The first involves a
semiautomatic test if the range of the background is lower than the range of
the assumed signal. To differ between the ranges an instance of
\code{\link[chipPCR]{bg.max}} is used. Herein, the function assumes that an
amplification takes place in case the signal of the amplification is larger
than the mean + 5SD than the background. The automatic test uses a Student's
t-Test \code{\link[stats]{t.test}} to compare the the beginning and the end
of the data. The input values are delivered by \code{\link[utils]{head}}
and \code{\link[utils]{tail}}, respectively. For other methods please refer
to the references listed below. Instead of assigning a zero to negative
amplification reaction uses the current implementation of
\code{\link[chipPCR]{amptester}} very small random values. This is because
some post function might fail in case all values are set to zero.
}
\references{
Frank, D. N. BARCRAWL and BARTAB: software tools for the design and
implementation of barcoded primers for highly multiplexed DNA sequencing
\emph{BMC bioinformatics}, 2009, Vol. 10, pp. 362
Peirson, S. N., Butler, J. N. and Foster, R. G. Experimental validation of
novel and conventional approaches to quantitative real-time PCR data analysis
\emph{Nucleic Acids Research}, 2003, Vol. 31(14), pp. e73-e73
Rao, X., Lai, D. and Huang, X. A New Method for Quantitative Real-Time
Polymerase Chain Reaction Data Analysis \emph{Journal of Computational
Biology}, 2013, Vol. 20(9), pp. 703-711
Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O.,
Hoff, M. J. B. v. d. and Moorman, A. F. M. Amplification efficiency: linking
baseline and bias in the analysis of quantitative PCR data, \emph{Nucleic
Acids Research}, 2009, Vol. 37(6), pp. e45-e45
Rutledge, R. G. and Stewart, D. A kinetic-based sigmoidal model for the
polymerase chain reaction and its application to high-capacity absolute
quantitative real-time PCR \emph{BMC biotechnology}, 2008, Vol. 8, pp. 47
Tichopad, A., Dilger, M., Schwarz, G. and Pfaffl, M. W. Standardized
determination of real-time PCR efficiency from a single reaction set-up
\emph{Nucleic Acids Research}, 2003, Vol. 31(20), pp. e122
Wilhelm, J., Pingoud, A. and Hahn, M. SoFAR: software for fully automatic
evaluation of real-time PCR data \emph{BioTechniques}, 2003, Vol. 34(2),
pp. 324-332
Zhao, S. and Fernald, R. D. Comprehensive Algorithm for Quantitative Real-Time
Polymerase Chain Reaction \emph{Journal of computational biology: a journal of
computational molecular cell biology}, 2005, Vol. 12(8), pp. 1047-1064
}
\author{
Stefan Roediger, Michal Burdukiewicz
}
\examples{
# Example to test an amplification reaction.
# Simulate first a positive amplification curve with 35 cycles and than a
# negative amplification curve with 35 cycles. The negative amplification
# curve is created from a normal distribution
cyc <- seq(1, 35, 1)
# Coefficients of a 5 parameter sigmoid model.
b <- -14.29; c <- 0.18; d <- 39.18; e <- 19.14
fluo.pos <- c + (d - c)/(1 + exp(b * (log(cyc) - log(e))))
fluo.neg <- rnorm(35)
plot(NA, NA, xlim = c(1, 35), ylim = c(-1, 40), xlab = "Cycles",
ylab = "Fluorescence",
main = "Simulation of a qPCR with 35 Cycles", type = "b")
points(amptester(fluo.pos), type = "b", pch = 20)
points(amptester(fluo.neg), type = "b", col = "red", pch = 20)
legend(1,40, c("Positive", "Negative Control (noise)"),
pch = 20, col = c(1,2), lwd = 2)
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{ amplification }
\keyword{ threshold }