forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfully_connected.cc
407 lines (341 loc) · 15.5 KB
/
fully_connected.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/kernels/fully_connected.h"
#include "CMSIS/NN/Include/arm_nnfunctions.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace {
struct OpData {
OpDataFullyConnected reference_op_data;
// Conv 1x1 that may be invoked in some cases currently need per channel
// quantization.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// Index to buffer for optimizations if applicable.
int buffer_idx;
int32_t batches;
int32_t accum_depth;
int32_t output_depth;
};
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const auto params =
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
MicroContext* micro_context = GetMicroContext(context);
TfLiteTensor* input =
micro_context->AllocateTempInputTensor(node, kFullyConnectedInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* filter = micro_context->AllocateTempInputTensor(
node, kFullyConnectedWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
TfLiteTensor* bias =
micro_context->AllocateTempInputTensor(node, kFullyConnectedBiasTensor);
TfLiteTensor* output = micro_context->AllocateTempOutputTensor(
node, kFullyConnectedOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
const RuntimeShape filter_shape = GetTensorShape(filter);
const RuntimeShape output_shape = GetTensorShape(output);
const int filter_dim_count = filter_shape.DimensionsCount();
const int output_dim_count = output_shape.DimensionsCount();
cmsis_nn_dims filter_dims;
filter_dims.n = filter_shape.Dims(filter_dim_count - 1);
filter_dims.h = 1;
filter_dims.w = 1;
filter_dims.c = output_shape.Dims(output_dim_count - 1);
data->accum_depth = filter_shape.Dims(filter_dim_count - 1);
data->batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
data->output_depth = output_shape.Dims(output_dim_count - 1);
// Set buffer index to a reset value
data->buffer_idx = -1;
TF_LITE_ENSURE_STATUS(CalculateOpDataFullyConnected(
context, params->activation, input->type, input, filter, bias, output,
&(data->reference_op_data)));
int32_t buf_size = 0;
if (input->type == kTfLiteInt16) {
buf_size = arm_fully_connected_s16_get_buffer_size(&filter_dims);
} else if (input->type == kTfLiteInt8) {
const RuntimeShape input_shape = GetTensorShape(input);
TFLITE_DCHECK_GE(output_dim_count, 2);
TFLITE_DCHECK_LE(output_dim_count, 4);
if (output_dim_count > 2 && data->accum_depth % 4 == 0) {
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, data->output_depth * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, data->output_depth * sizeof(int32_t)));
cmsis_nn_dims input_dims;
input_dims.n = data->batches;
input_dims.h = 1;
input_dims.w = 1;
input_dims.c = data->accum_depth;
buf_size = arm_convolve_1x1_s8_fast_get_buffer_size(&input_dims);
} else {
buf_size = arm_fully_connected_s8_get_buffer_size(&filter_dims);
}
}
if (buf_size > 0) {
TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
context, buf_size, &data->buffer_idx));
}
micro_context->DeallocateTempTfLiteTensor(output);
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
if (bias != nullptr) {
micro_context->DeallocateTempTfLiteTensor(bias);
}
return kTfLiteOk;
}
void PopulateCommonParams(TfLiteContext* context,
cmsis_nn_per_tensor_quant_params& quant_params,
cmsis_nn_dims& input_dims, cmsis_nn_dims& filter_dims,
cmsis_nn_dims& bias_dims, cmsis_nn_dims& output_dims,
cmsis_nn_context& ctx, const OpData& data) {
quant_params.multiplier = data.reference_op_data.output_multiplier;
quant_params.shift = data.reference_op_data.output_shift;
input_dims.n = data.batches;
input_dims.h = 1;
input_dims.w = 1;
input_dims.c = data.accum_depth;
filter_dims.n = data.accum_depth;
filter_dims.h = 1;
filter_dims.w = 1;
filter_dims.c = data.output_depth;
bias_dims.n = 1;
bias_dims.h = 1;
bias_dims.w = 1;
bias_dims.c = data.output_depth;
output_dims.n = data.batches;
output_dims.h = 1;
output_dims.w = 1;
output_dims.c = data.output_depth;
ctx.buf = nullptr;
ctx.size = 0;
if (data.buffer_idx > -1) {
ctx.buf = context->GetScratchBuffer(context, data.buffer_idx);
}
}
TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
const int output_dim_count = output_shape.DimensionsCount();
TFLITE_DCHECK_GE(output_dim_count, 2);
TFLITE_DCHECK_LE(output_dim_count, 4);
cmsis_nn_per_tensor_quant_params quant_params;
cmsis_nn_dims input_dims;
cmsis_nn_dims filter_dims;
cmsis_nn_dims bias_dims;
cmsis_nn_dims output_dims;
cmsis_nn_context ctx;
PopulateCommonParams(context, quant_params, input_dims, filter_dims,
bias_dims, output_dims, ctx, data);
const int32_t* bias_data =
nullptr != bias ? tflite::micro::GetTensorData<int32_t>(bias) : nullptr;
if (output_dim_count > 2 && data.accum_depth % 4 == 0) {
cmsis_nn_conv_params conv_params;
conv_params.dilation.h = 1;
conv_params.dilation.w = 1;
conv_params.input_offset = -data.reference_op_data.input_zero_point;
conv_params.output_offset = data.reference_op_data.output_zero_point;
conv_params.stride.h = 1;
conv_params.stride.w = 1;
conv_params.padding.h = 0;
conv_params.padding.w = 0;
conv_params.activation.min = data.reference_op_data.output_activation_min;
conv_params.activation.max = data.reference_op_data.output_activation_max;
cmsis_nn_per_channel_quant_params per_channel_quant_params;
per_channel_quant_params.multiplier =
const_cast<int32_t*>(data.per_channel_output_multiplier);
per_channel_quant_params.shift =
const_cast<int32_t*>(data.per_channel_output_shift);
for (int i = 0; i < data.output_depth; i++) {
per_channel_quant_params.multiplier[i] = quant_params.multiplier;
per_channel_quant_params.shift[i] = quant_params.shift;
}
TF_LITE_ENSURE_EQ(
context,
arm_convolve_1x1_s8_fast(
&ctx, &conv_params, &per_channel_quant_params, &input_dims,
tflite::micro::GetTensorData<int8_t>(input), &filter_dims,
tflite::micro::GetTensorData<int8_t>(filter), &bias_dims, bias_data,
&output_dims, tflite::micro::GetTensorData<int8_t>(output)),
ARM_CMSIS_NN_SUCCESS);
} else {
cmsis_nn_fc_params fc_params;
fc_params.input_offset = -data.reference_op_data.input_zero_point;
fc_params.output_offset = data.reference_op_data.output_zero_point;
fc_params.filter_offset = 0;
fc_params.activation.min = data.reference_op_data.output_activation_min;
fc_params.activation.max = data.reference_op_data.output_activation_max;
TF_LITE_ENSURE_EQ(
context,
arm_fully_connected_s8(
&ctx, &fc_params, &quant_params, &input_dims,
tflite::micro::GetTensorData<int8_t>(input), &filter_dims,
tflite::micro::GetTensorData<int8_t>(filter), &bias_dims, bias_data,
&output_dims, tflite::micro::GetTensorData<int8_t>(output)),
ARM_CMSIS_NN_SUCCESS);
}
return kTfLiteOk;
}
TfLiteStatus EvalQuantizedInt16(TfLiteContext* context, TfLiteNode* node,
const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
cmsis_nn_per_tensor_quant_params quant_params;
cmsis_nn_dims input_dims;
cmsis_nn_dims filter_dims;
cmsis_nn_dims bias_dims;
cmsis_nn_dims output_dims;
cmsis_nn_context ctx;
PopulateCommonParams(context, quant_params, input_dims, filter_dims,
bias_dims, output_dims, ctx, data);
const int64_t* bias_data =
nullptr != bias ? tflite::micro::GetTensorData<int64_t>(bias) : nullptr;
cmsis_nn_fc_params fc_params;
fc_params.input_offset = -data.reference_op_data.input_zero_point;
fc_params.output_offset = data.reference_op_data.output_zero_point;
fc_params.filter_offset = 0;
fc_params.activation.min = data.reference_op_data.output_activation_min;
fc_params.activation.max = data.reference_op_data.output_activation_max;
TF_LITE_ENSURE_EQ(
context,
arm_fully_connected_s16(
&ctx, &fc_params, &quant_params, &input_dims,
tflite::micro::GetTensorData<int16_t>(input), &filter_dims,
tflite::micro::GetTensorData<int8_t>(filter), &bias_dims, bias_data,
&output_dims, tflite::micro::GetTensorData<int16_t>(output)),
ARM_CMSIS_NN_SUCCESS);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
const auto* params =
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor);
const TfLiteEvalTensor* bias =
tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
// Checks in Prepare ensure input, output and filter types are all the same.
switch (input->type) {
case kTfLiteFloat32: {
const float* bias_data =
nullptr != bias ? tflite::micro::GetTensorData<float>(bias) : nullptr;
tflite::reference_ops::FullyConnected(
FullyConnectedParamsFloat(params->activation),
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias), bias_data,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
}
case kTfLiteInt8: {
return EvalQuantizedInt8(context, node, data, input, filter, bias,
output);
}
case kTfLiteInt16: {
return EvalQuantizedInt16(context, node, data, input, filter, bias,
output);
}
default: {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
}
return kTfLiteOk;
}
// Note that the current function names are not ideal at all (this EvalInt8
// function internally calls EvalQuantizedInt8, and there is similar name
// aliasing in the Eval function too). We will be attempting to have a more
// descriptive naming convention but holding off on that for now, since the
// renaming might be coupled with reducing code duplication and some additional
// refactoring.
TfLiteStatus EvalInt8(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor);
const TfLiteEvalTensor* bias =
tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
// Checks in Prepare ensure input, output and filter types are all the same.
if (input->type != kTfLiteInt8) {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
return EvalQuantizedInt8(context, node, data, input, filter, bias, output);
}
TfLiteStatus EvalInt16(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor);
const TfLiteEvalTensor* bias =
tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
// Checks in Prepare ensure input, output and filter types are all the same.
if (input->type != kTfLiteInt16) {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
return EvalQuantizedInt16(context, node, data, input, filter, bias, output);
}
} // namespace
TfLiteRegistration Register_FULLY_CONNECTED() {
return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
TfLiteRegistration Register_FULLY_CONNECTED_INT8() {
return tflite::micro::RegisterOp(Init, Prepare, EvalInt8);
}
TfLiteRegistration Register_FULLY_CONNECTED_INT16() {
return tflite::micro::RegisterOp(Init, Prepare, EvalInt16);
}
} // namespace tflite