-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtest-wav2vec2.py
52 lines (42 loc) · 1.95 KB
/
test-wav2vec2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import soundfile as sf
import torch
from jiwer import wer
import os
import deepspeed
from deepspeed import module_inject
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2EncoderLayer
from deepspeed.accelerator import get_accelerator
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
# Get local gpu rank from torch.distributed/deepspeed launcher
local_rank = int(os.getenv('LOCAL_RANK', '0'))
world_size = int(os.getenv('WORLD_SIZE', '1'))
device = torch.device(get_accelerator().device_name(local_rank))
print(
"***************** Creating model in RANK ({0}) with WORLD_SIZE = {1} *****************"
.format(local_rank,
world_size))
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model = deepspeed.init_inference(model,
mp_size=world_size,
dtype=torch.float,
injection_policy={Wav2Vec2EncoderLayer: ('attention.out_proj','feed_forward.output_dense')},
replace_with_kernel_inject=False)
model.to(device)
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to(device)).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))