-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathtest_ds_initialize.py
494 lines (409 loc) · 20 KB
/
test_ds_initialize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import pytest
from typing import Callable
import torch
from torch.optim import Optimizer, Adam, AdamW
from torch.optim.lr_scheduler import _LRScheduler, LambdaLR
from unit.simple_model import SimpleModel, random_dataloader
from unit.common import DistributedTest
from unit.util import bf16_required_version_check, required_amp_check
import deepspeed
from deepspeed.ops.adam import FusedAdam
from deepspeed.runtime.lr_schedules import WARMUP_LR, WarmupLR
from deepspeed.runtime.config import ADAM_OPTIMIZER
from deepspeed.runtime.utils import see_memory_usage
from deepspeed.utils.torch import required_torch_version
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import FusedAdamBuilder
from deepspeed import _assert_trainobjs_not_inited, _is_initialized
@pytest.mark.parametrize('zero_stage', [0, 3])
class TestNoOptim(DistributedTest):
world_size = 1
def test(self, zero_stage):
if zero_stage == 3 and not required_torch_version(min_version=1.8):
pytest.skip("zero-3 param offload requires at least torch 1.8")
ds_config = {
'train_batch_size': self.world_size,
'zero_optimization': {
"stage": zero_stage,
"offload_param": {
"device": "cpu"
}
}
}
if get_accelerator().is_fp16_supported():
ds_config["fp16"] = {"enabled": True}
elif get_accelerator().is_bf16_supported():
ds_config["bf16"] = {"enabled": True}
# 20B test
#hidden_dim = 16 * 1024
hidden_dim = 4
with deepspeed.zero.Init(enabled=zero_stage == 3, config_dict_or_path=ds_config):
model = SimpleModel(hidden_dim, nlayers=78)
see_memory_usage('pre-init', force=True)
model, _, _, _ = deepspeed.initialize(model=model, config=ds_config)
see_memory_usage('post-init', force=True)
data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
for batch in data_loader:
model(batch[0], batch[1])
see_memory_usage('post-fwds', force=True)
@pytest.mark.parametrize('optimizer_type', [None, Optimizer, Callable])
class TestClientOptimizer(DistributedTest):
world_size = 1
def test(self, optimizer_type):
def _optimizer_callable(params) -> Optimizer:
return AdamW(params=params)
if (optimizer_type is None) and (not deepspeed.ops.__compatible_ops__[FusedAdamBuilder.NAME]):
pytest.skip("FusedAdam is not compatible")
hidden_dim = 10
model = SimpleModel(hidden_dim)
config_dict = {'train_batch_size': 1}
if optimizer_type is None:
client_optimizer = None
config_dict['optimizer'] = {'type': ADAM_OPTIMIZER}
elif optimizer_type is Optimizer:
client_optimizer = Adam(model.parameters())
else:
client_optimizer = _optimizer_callable
_, ds_optimizer, _, _ = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer)
if client_optimizer is None:
assert isinstance(ds_optimizer, FusedAdam)
elif isinstance(client_optimizer, Optimizer):
assert ds_optimizer == client_optimizer
else:
assert isinstance(ds_optimizer, AdamW)
@pytest.mark.parametrize('client_parameters', [True, False])
class TestConfigOptimizer(DistributedTest):
world_size = 1
@pytest.mark.skipif(not deepspeed.ops.__compatible_ops__[FusedAdamBuilder.NAME],
reason="FusedAdam is not compatible")
def test(self, client_parameters):
ds_config = {"train_batch_size": 1, "optimizer": {"type": "Adam", "params": {"lr": 0.001}}}
hidden_dim = 10
model = SimpleModel(hidden_dim)
if client_parameters:
model_parameters = list(model.parameters())
else:
model_parameters = None
_, ds_optimizer, _, _ = deepspeed.initialize(config=ds_config, model=model, model_parameters=model_parameters)
assert isinstance(ds_optimizer, FusedAdam)
@pytest.mark.parametrize('optimizer_extension', ['zero1', 'zero2', 'zero3', 'amp', None])
@pytest.mark.parametrize('model_dtype', ['fp16', 'bf16', 'fp32'])
@pytest.mark.parametrize('grad_accum_dtype', [None, 'fp16', 'bf16', 'fp32'])
class TestOptimizerImplementation(DistributedTest):
world_size = 1
reuse_dist_env = True
def test(self, optimizer_extension, model_dtype, grad_accum_dtype):
if not get_accelerator().is_fp16_supported():
if model_dtype == 'fp16' or grad_accum_dtype == 'fp16':
pytest.skip("fp16 is not supported")
if optimizer_extension == 'zero1':
zero_stage = 1
elif optimizer_extension == 'zero2':
zero_stage = 2
elif optimizer_extension == 'zero3':
zero_stage = 3
else:
zero_stage = 0
amp = (optimizer_extension == 'amp')
fp16 = (model_dtype == 'fp16')
bf16 = (model_dtype == 'bf16')
# Skip checks
if bf16 and not bf16_required_version_check():
pytest.skip(
"DeepSpeed BFloat16 tests need torch >= 1.10, NCCL >= 2.10.3, CUDA > =11.0 and HW support for BFloat16 to run correctly"
)
if amp and not required_amp_check():
pytest.skip("Amp is not installed can't run amp check")
# Config declaration
ds_config = {
"train_batch_size": 1,
'fp16': {
'enabled': fp16
},
'bf16': {
'enabled': bf16
},
'amp': {
'enabled': amp
},
'zero_optimization': {
"stage": zero_stage
},
"data_types": {
"grad_accum_dtype": grad_accum_dtype
},
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.001
}
}
}
key = (optimizer_extension, model_dtype, grad_accum_dtype)
# Enumerate supported configurations
is_supported = {}
# ZeRO 1 Wrapper
is_supported[('zero1', 'fp16', None)] = True
is_supported[('zero1', 'fp16', 'fp16')] = True
is_supported[('zero1', 'fp16', 'bf16')] = True
is_supported[('zero1', 'fp16', 'fp32')] = True
is_supported[('zero1', 'bf16', None)] = True
is_supported[('zero1', 'bf16', 'fp16')] = True
is_supported[('zero1', 'bf16', 'bf16')] = True
is_supported[('zero1', 'bf16', 'fp32')] = True
is_supported[('zero1', 'fp32', None)] = True
is_supported[('zero1', 'fp32', 'fp16')] = True
is_supported[('zero1', 'fp32', 'bf16')] = True
is_supported[('zero1', 'fp32', 'fp32')] = True
# ZeRO 2 Wrapper
is_supported[('zero2', 'fp16', None)] = True
is_supported[('zero2', 'fp16', 'fp16')] = True
is_supported[('zero2', 'fp16', 'bf16')] = True
is_supported[('zero2', 'fp16', 'fp32')] = True
is_supported[('zero2', 'bf16', None)] = True
is_supported[('zero2', 'bf16', 'fp16')] = True
is_supported[('zero2', 'bf16', 'bf16')] = True
is_supported[('zero2', 'bf16', 'fp32')] = True
is_supported[('zero2', 'fp32', None)] = True
is_supported[('zero2', 'fp32', 'fp16')] = True
is_supported[('zero2', 'fp32', 'bf16')] = True
is_supported[('zero2', 'fp32', 'fp32')] = True
# ZeRO 3 Wrapper
is_supported[('zero3', 'fp16', None)] = True
is_supported[('zero3', 'fp16', 'fp16')] = True
is_supported[('zero3', 'fp16', 'bf16')] = True
is_supported[('zero3', 'fp16', 'fp32')] = True
is_supported[('zero3', 'bf16', None)] = True
is_supported[('zero3', 'bf16', 'fp16')] = True
is_supported[('zero3', 'bf16', 'bf16')] = True
is_supported[('zero3', 'bf16', 'fp32')] = True
is_supported[('zero3', 'fp32', None)] = True
is_supported[('zero3', 'fp32', 'fp16')] = True
is_supported[('zero3', 'fp32', 'bf16')] = True
is_supported[('zero3', 'fp32', 'fp32')] = True
# Amp Wrapper
is_supported[('amp', 'fp32', None)] = True
is_supported[('amp', 'fp32', 'fp32')] = True
# FP16 Wrapper
is_supported[(None, 'fp16', None)] = True
is_supported[(None, 'fp16', 'fp16')] = True
# BF16 Wrapper
is_supported[(None, 'bf16', 'fp32')] = True
is_supported[(None, 'bf16', None)] = True
# No Wrapper
is_supported[(None, 'fp32', None)] = True
is_supported[(None, 'fp32', 'fp32')] = True
hidden_dim = 10
model = SimpleModel(hidden_dim)
model_parameters = list(model.parameters())
if key in is_supported:
_, ds_optimizer, _, _ = deepspeed.initialize(config=ds_config,
model=model,
model_parameters=model_parameters)
assert True
else:
with pytest.raises(NotImplementedError):
_, ds_optimizer, _, _ = deepspeed.initialize(config=ds_config,
model=model,
model_parameters=model_parameters)
@pytest.mark.parametrize("scheduler_type", [None, _LRScheduler, Callable])
@pytest.mark.parametrize("optimizer_type", [None, Optimizer, Callable])
class TestClientLrScheduler(DistributedTest):
world_size = 1
def test(self, scheduler_type, optimizer_type):
def _my_lambda(epoch):
return epoch // 10
def _optimizer_callable(params) -> Optimizer:
return torch.optim.AdamW(params=params)
def _lr_scheduler_callable(optimizer) -> _LRScheduler:
return LambdaLR(optimizer, _my_lambda)
hidden_dim = 10
model = SimpleModel(hidden_dim)
config_dict = {'train_batch_size': 1}
client_optimizer = None
client_scheduler = None
if optimizer_type is None:
config_dict['optimizer'] = {'type': ADAM_OPTIMIZER}
elif optimizer_type is Optimizer:
client_optimizer = torch.optim.Adam(model.parameters())
else:
client_optimizer = _optimizer_callable
if scheduler_type is None:
config_dict['scheduler'] = {'type': WARMUP_LR, 'params': {}}
elif scheduler_type == _LRScheduler:
if isinstance(client_optimizer, Optimizer):
client_scheduler = LambdaLR(client_optimizer, _my_lambda)
else:
# Verify invalid combination is correctly handled
client_scheduler = LambdaLR(torch.optim.Adam(model.parameters()), _my_lambda)
else:
client_scheduler = _lr_scheduler_callable
if isinstance(client_scheduler, _LRScheduler) and not isinstance(client_optimizer, Optimizer):
with pytest.raises(AssertionError):
_, _, _, _ = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer,
lr_scheduler=client_scheduler)
else:
_, _, _, ds_lr_scheduler = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer,
lr_scheduler=client_scheduler)
if client_scheduler is None:
assert isinstance(ds_lr_scheduler, WarmupLR)
elif isinstance(client_scheduler, _LRScheduler):
assert ds_lr_scheduler == client_scheduler
else:
assert isinstance(ds_lr_scheduler, LambdaLR)
@pytest.mark.parametrize("scheduler_type", [None, _LRScheduler, Callable])
class TestClientLrSchedulerInit(DistributedTest):
world_size = 1
def test_same_lrscheler_and_callable(self, scheduler_type):
"""
Expect behavior
if lr scheduler is defined in code and passed into initialize as arg,
it will be used even this is a lr scheduler has been defined in config.
Initialize lr scheduler from config when no lr scheduler is defined in code.
"""
def _my_lambda(epoch):
return epoch // 10
def _lr_scheduler_callable(optimizer) -> _LRScheduler:
return LambdaLR(optimizer, _my_lambda)
config_dict = {'train_batch_size': 1}
hidden_dim = 10
model = SimpleModel(hidden_dim)
client_optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
if scheduler_type is None:
config_dict['scheduler'] = {'type': WARMUP_LR, 'params': {}}
client_scheduler = None
elif scheduler_type == _LRScheduler:
client_scheduler = LambdaLR(client_optimizer, _my_lambda)
else:
client_scheduler = _lr_scheduler_callable
_, _, _, ds_lr_scheduler = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer,
lr_scheduler=client_scheduler)
if scheduler_type is None:
# in this case, we initialize from config
assert not isinstance(ds_lr_scheduler, LambdaLR)
assert isinstance(ds_lr_scheduler, WarmupLR)
else:
# in this case, we initialize from passed-in scheduler
assert isinstance(ds_lr_scheduler, LambdaLR)
assert not isinstance(ds_lr_scheduler, WarmupLR)
def test_diff_lrscheler_and_callable(self, scheduler_type):
"""
In this test,
the LambdaLR will be used for lrscheduler type
and the StepLR will be used for callable type
"""
from torch.optim.lr_scheduler import StepLR
def _my_lambda(epoch):
return epoch // 10
def _lr_scheduler_callable(optimizer) -> _LRScheduler:
return StepLR(optimizer, step_size=30)
config_dict = {'train_batch_size': 1}
hidden_dim = 10
model = SimpleModel(hidden_dim)
client_optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
if scheduler_type is None:
config_dict['scheduler'] = {'type': WARMUP_LR, 'params': {}}
client_scheduler = None
elif scheduler_type == _LRScheduler:
client_scheduler = LambdaLR(client_optimizer, _my_lambda)
else:
client_scheduler = _lr_scheduler_callable
_, _, _, ds_lr_scheduler = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer,
lr_scheduler=client_scheduler)
if scheduler_type is None:
assert isinstance(ds_lr_scheduler, WarmupLR)
elif scheduler_type == _LRScheduler:
assert isinstance(ds_lr_scheduler, LambdaLR)
else:
# callable
assert isinstance(ds_lr_scheduler, StepLR)
def test_diff_lrscheler_and_callable_onecyclelr_steplr(self, scheduler_type):
from deepspeed.runtime.lr_schedules import OneCycle, ONE_CYCLE, CYCLE_MIN_LR, CYCLE_MAX_LR
from torch.optim.lr_scheduler import OneCycleLR, StepLR
def _lr_scheduler_callable(optimizer) -> _LRScheduler:
return OneCycleLR(optimizer, max_lr=0.01, total_steps=200)
config_dict = {'train_batch_size': 1}
hidden_dim = 10
model = SimpleModel(hidden_dim)
client_optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
if scheduler_type is None:
config_dict['scheduler'] = {'type': ONE_CYCLE, 'params': {CYCLE_MIN_LR: 0, CYCLE_MAX_LR: 0.1}}
client_scheduler = None
elif scheduler_type == _LRScheduler:
client_scheduler = StepLR(client_optimizer, step_size=30)
else:
client_scheduler = _lr_scheduler_callable
_, _, _, ds_lr_scheduler = deepspeed.initialize(config=config_dict,
model=model,
model_parameters=list(model.parameters()),
optimizer=client_optimizer,
lr_scheduler=client_scheduler)
if scheduler_type is None:
assert isinstance(ds_lr_scheduler, OneCycle)
elif scheduler_type == _LRScheduler:
assert isinstance(ds_lr_scheduler, StepLR)
else:
# callable
assert isinstance(ds_lr_scheduler, OneCycleLR)
# https://github.com/microsoft/DeepSpeed/issues/6770
class TestNoRepeatedInitializationAllowed(DistributedTest):
world_size = 1
def test_no_repeated_init(self):
hidden_dim = 10
model = SimpleModel(hidden_dim)
client_optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Initialize DeepSpeed configurations for fp16
config_dict = {'train_batch_size': 1}
# Initialize DeepSpeed engine
_assert_trainobjs_not_inited(model=model, optimizer=client_optimizer, lr_scheduler=None)
model_engine, optim, _, _ = deepspeed.initialize(model=model,
optimizer=client_optimizer,
config_params=config_dict)
# arguments should be marked as initialized now
assert _is_initialized(model), "Client model should be marked as initialized"
assert _is_initialized(client_optimizer), "Client optimizer should be marked as initialized"
# return values should also be marked as initialized
assert _is_initialized(model_engine), "Model engine should be marked as initialized"
assert _is_initialized(optim), "Optimizer should be marked as initialized"
exception_raised = False
try:
deepspeed.initialize(model=model, optimizer=client_optimizer, config_params=config_dict)
except ValueError:
exception_raised = True
assert exception_raised, "Repeated initialization should raise an exception"
exception_raised = False
try:
deepspeed.initialize(model=model_engine, optimizer=client_optimizer, config_params=config_dict)
except ValueError:
exception_raised = True
assert exception_raised, "Initialization on ds types should raise an exception"
exception_raised = False
try:
deepspeed.initialize(model=model, optimizer=client_optimizer, config_params=config_dict)
except ValueError:
exception_raised = True
assert exception_raised, "Initialization on ds types should raise an exception"
exception_raised = False
try:
deepspeed.initialize(model=model_engine, optimizer=client_optimizer, config_params=config_dict)
except ValueError:
exception_raised = True
assert exception_raised, "Initialization on ds types should raise an exception"