forked from sahil280114/stable-diffusion-inpainting-template
-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
54 lines (45 loc) · 2.06 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from operator import mod
import torch
from torch import autocast
from diffusers import StableDiffusionInpaintPipeline
import base64
from io import BytesIO
import os
import PIL
# Init is ran on server startup
# Load your model to GPU as a global variable here using the variable name "model"
def init():
global model
HF_AUTH_TOKEN = "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"
model = StableDiffusionInpaintPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16,use_auth_token=HF_AUTH_TOKEN).to("cuda")
# Inference is ran for every server call
# Reference your preloaded global model variable here.
def inference(model_inputs:dict) -> dict:
global model
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
init_image_base64 = model_inputs.get('init_image_base64', None)
if init_image_base64==None:
return {'message': "No init_image provided"}
mask_image_base64 = model_inputs.get('mask_image_base64', None)
if mask_image_base64==None:
return {'message': "No mask_image provided"}
strength = model_inputs.get("strength",0.8)
guidance_scale = model_inputs.get("guidance_scale",7.5)
steps = model_inputs.get("steps",50)
init_image_encoded = init_image_base64.encode('utf-8')
init_image_bytes = BytesIO(base64.b64decode(init_image_encoded))
init_image = PIL.Image.open(init_image_bytes)
mask_image_encoded = mask_image_base64.encode('utf-8')
mask_image_bytes = BytesIO(base64.b64decode(mask_image_encoded))
mask_image = PIL.Image.open(mask_image_bytes)
# Run the model
with autocast("cuda"):
image = model(prompt,init_image=init_image,mask_image=mask_image,strength=strength,num_inference_steps=steps,guidance_scale=guidance_scale).images[0]
buffered = BytesIO()
image.save(buffered,format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
# Return the results as a dictionary
return {'image_base64': image_base64}