forked from xuebinqin/BASNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_selector.py
executable file
·109 lines (82 loc) · 2.79 KB
/
image_selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
from skimage import io, transform
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms#, utils
from torchvision import models
# import torch.optim as optim
import numpy as np
from PIL import Image
import glob
import time
from data_loader import RescaleT
from data_loader import CenterCrop
from data_loader import ToTensor
from data_loader import ToTensorLab
from data_loader import SalObjDataset
from model import BASNet
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def normPRED(d):
ma = torch.max(d)
mi = torch.min(d)
dn = (d-mi)/(ma-mi)
return dn
def save_output(image_name,pred,d_dir):
predict = pred
predict = predict.squeeze()
predict_np = predict.cpu().data.numpy()
io.imsave('inter_img.png', predict_np*255)
im = Image.fromarray(predict_np*255).convert('RGB')
img_name = image_name.split("/")[-1]
image = io.imread(image_name)
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
pb_np = np.array(imo)
aaa = img_name.split(".")
bbb = aaa[0:-1]
imidx = bbb[0]
for i in range(1,len(bbb)):
imidx = imidx + "." + bbb[i]
imo.save(d_dir+imidx+'.png')
if __name__ == '__main__':
# --------- 1. get image path and name ---------
image_dir = './test_data/test_images/'
prediction_dir = './test_data/test_results/'
#model_dir = './saved_models/basnet_bsi/basnet_time.pth'
img_name_list = glob.glob(image_dir + '*.jpg')
# --------- 2. dataloader ---------
#1. dataload
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, lbl_name_list = [],transform=transforms.Compose([RescaleT(224),ToTensorLab(flag=0)]))
test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=4,shuffle=False,num_workers=1)
# --------- 3. model define ---------
print("...load BASNet...")
net = models.resnext101_32x8d(pretrained=True)
if torch.cuda.is_available():
net.cuda()
net.eval()
# --------- 4. inference for each image ---------
for i_test, data_test in enumerate(test_salobj_dataloader):
inputs_test = data_test['image']
inputs_test = inputs_test.type(torch.FloatTensor)
if torch.cuda.is_available():
inputs_test = Variable(inputs_test.cuda())
else:
inputs_test = Variable(inputs_test)
d1 = net(inputs_test)#,d2,d3,d4,d5,d6,d7,d8
#print(d1)
torch.cuda.synchronize()
#d1 = d1.cpu()
print(time.time()-start)
#print(d1.shape)
#traced_script_module = torch.jit.trace(net, inputs_test)
#traced_script_module.save("traced_model_BASNet.pt")
# normalization
#d1 = torch.nn.functional.sigmoid(d1)
#pred = d1[:,0,:,:]
#pred = normPRED(d1)
# save results to test_results folder
#save_output(img_name_list[i_test],pred,prediction_dir)
#del d1,d2,d3,d4,d5,d6,d7,d8