-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathenvironment.py
1135 lines (1029 loc) · 37.3 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
from distutils.log import INFO
from logging import getLogger
import os
import io
import sys
import copy
import json
import operator
from typing import Optional, List, Dict
from collections import deque, defaultdict
import time
import traceback
import numpy as np
import symbolicregression.envs.encoders as encoders
import symbolicregression.envs.generators as generators
from symbolicregression.envs.generators import all_operators
import symbolicregression.envs.simplifiers as simplifiers
from typing import Optional, Dict
import torch
import torch.nn.functional as F
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import collections
from .utils import *
from ..utils import bool_flag, timeout, MyTimeoutError
import math
import scipy
SPECIAL_WORDS = [
"<EOS>",
"<X>",
"</X>",
"<Y>",
"</Y>",
"</POINTS>",
"<INPUT_PAD>",
"<OUTPUT_PAD>",
"<PAD>",
"(",
")",
"SPECIAL",
"OOD_unary_op",
"OOD_binary_op",
"OOD_constant",
]
logger = getLogger()
SKIP_ITEM = "SKIP_ITEM"
class FunctionEnvironment(object):
TRAINING_TASKS = {"functions"}
def __init__(self, params):
self.params = params
self.rng = None
self.float_precision = params.float_precision
self.mantissa_len = params.mantissa_len
self.max_size = None
self.float_tolerance = 10 ** (-params.float_precision)
self.additional_tolerance = [
10 ** (-i) for i in range(params.float_precision + 1)
]
assert (
params.float_precision + 1
) % params.mantissa_len == 0, "Bad precision/mantissa len ratio"
self.generator = generators.RandomFunctions(params, SPECIAL_WORDS)
self.float_encoder = self.generator.float_encoder
self.float_words = self.generator.float_words
self.equation_encoder = self.generator.equation_encoder
self.equation_words = self.generator.equation_words
self.equation_words += self.float_words
self.simplifier = simplifiers.Simplifier(self.generator)
# number of words / indices
self.float_id2word = {i: s for i, s in enumerate(self.float_words)}
self.equation_id2word = {i: s for i, s in enumerate(self.equation_words)}
self.float_word2id = {s: i for i, s in self.float_id2word.items()}
self.equation_word2id = {s: i for i, s in self.equation_id2word.items()}
for ood_unary_op in self.generator.extra_unary_operators:
self.equation_word2id[ood_unary_op] = self.equation_word2id["OOD_unary_op"]
for ood_binary_op in self.generator.extra_binary_operators:
self.equation_word2id[ood_binary_op] = self.equation_word2id[
"OOD_binary_op"
]
if self.generator.extra_constants is not None:
for c in self.generator.extra_constants:
self.equation_word2id[c] = self.equation_word2id["OOD_constant"]
assert len(self.float_words) == len(set(self.float_words))
assert len(self.equation_word2id) == len(set(self.equation_word2id))
self.n_words = params.n_words = len(self.equation_words)
logger.info(
f"vocabulary: {len(self.float_word2id)} float words, {len(self.equation_word2id)} equation words"
)
def mask_from_seperator(self, x, sep):
sep_id = self.float_word2id[sep]
alen = (
torch.arange(x.shape[0], dtype=torch.long, device=x.device)
.unsqueeze(-1)
.repeat(1, x.shape[1])
)
sep_id_occurence = torch.tensor(
[
torch.where(x[:, i] == sep_id)[0][0].item()
if len(torch.where(x[:, i] == sep_id)[0]) > 0
else -1
for i in range(x.shape[1])
]
)
mask = alen > sep_id_occurence
return mask
def batch_equations(self, equations, max_len=200):
"""
Take as input a list of n sequences (torch.LongTensor vectors) and return
a tensor of size (slen, n) where slen is the length of the longest
sentence, and a vector lengths containing the length of each sentence.
"""
lengths = torch.LongTensor([2 + len(eq) for eq in equations])
sent = torch.LongTensor(max_len, lengths.size(0)).fill_(
self.float_word2id["<PAD>"]) #modified
sent[0] = self.equation_word2id["<EOS>"]
for i, eq in enumerate(equations):
sent[1 : lengths[i] - 1, i].copy_(eq)
sent[lengths[i] - 1, i] = self.equation_word2id["<EOS>"]
return sent, lengths
def word_to_idx(self, words, float_input=True):
if float_input:
return [
[
torch.LongTensor([self.float_word2id[dim] for dim in point])
for point in seq
]
for seq in words
]
else:
return [
torch.LongTensor([self.equation_word2id[w] for w in eq]) for eq in words
]
def word_to_infix(self, words, is_float=True, str_array=True):
if is_float:
m = self.float_encoder.decode(words)
if m is None:
return None
if str_array:
return np.array2string(np.array(m))
else:
return np.array(m)
else:
m = self.equation_encoder.decode(words)
if m is None:
return None
if str_array:
return m.infix()
else:
return m
def wrap_equation_floats(self, tree, constants):
prefix = tree.prefix().split(",")
j = 0
for i, elem in enumerate(prefix):
if elem.startswith("CONSTANT"):
prefix[i] = str(constants[j])
j += 1
assert j == len(constants), "all constants were not fitted"
assert "CONSTANT" not in prefix, "tree {} got constant after wrapper {}".format(
tree, constants
)
tree_with_constants = self.word_to_infix(
prefix, is_float=False, str_array=False
)
return tree_with_constants
def idx_to_infix(self, lst, is_float=True, str_array=True):
if is_float:
idx_to_words = [self.float_id2word[int(i)] for i in lst]
else:
idx_to_words = [self.equation_id2word[int(term)] for term in lst]
return self.word_to_infix(idx_to_words, is_float, str_array)
def gen_expr(
self,
train,
input_length_modulo=-1,
nb_binary_ops=None,
nb_unary_ops=None,
input_dimension=None,
output_dimension=None,
n_input_points=None,
input_distribution_type=None,
):
errors = defaultdict(int)
if not train or self.params.use_controller:
if nb_unary_ops is None:
nb_unary_ops = self.rng.randint(
self.params.min_unary_ops, self.params.max_unary_ops + 1
)
if input_dimension is None:
input_dimension = self.rng.randint(
self.params.min_input_dimension, self.params.max_input_dimension + 1
)
while True:
try:
expr, error = self._gen_expr(
train,
input_length_modulo=input_length_modulo,
nb_binary_ops=nb_binary_ops,
nb_unary_ops=nb_unary_ops,
input_dimension=input_dimension,
output_dimension=output_dimension,
n_input_points=n_input_points,
input_distribution_type=input_distribution_type,
)
if error:
errors[error[0]] += 1
assert False
return expr, errors
except:
if self.params.debug:
pass
continue
@timeout(1)
def _gen_expr(
self,
train,
input_length_modulo=-1,
nb_binary_ops=None,
nb_unary_ops=None,
input_dimension=None,
output_dimension=None,
n_input_points=None,
input_distribution_type=None,
):
(
tree,
original_input_dimension,
output_dimension,
nb_unary_ops,
nb_binary_ops,
) = self.generator.generate_multi_dimensional_tree(
rng=self.rng,
nb_unary_ops=nb_unary_ops,
nb_binary_ops=nb_binary_ops,
input_dimension=input_dimension,
output_dimension=output_dimension,
)
if tree is None:
return {"tree": tree}, ["bad tree"]
sum_binary_ops = max(nb_binary_ops)
sum_unary_ops = max(nb_unary_ops)
sum_ops = sum_binary_ops + sum_unary_ops
input_dimension = self.generator.relabel_variables(tree)
if input_dimension == 0 or (
self.params.enforce_dim and original_input_dimension > input_dimension
):
return {"tree": tree}, ["bad input dimension"]
for op in self.params.operators_to_not_repeat.split(","):
if op and tree.prefix().count(op) > 1:
return {"tree": tree}, ["ops repeated"]
if self.params.use_sympy:
len_before = len(tree.prefix().split(","))
tree = (
self.simplifier.simplify_tree(tree) if self.params.use_sympy else tree
)
len_after = len(tree.prefix().split(","))
if tree is None or len_after > 2 * len_before:
return {"tree": tree}, ["simplification error"]
dimensions = {
"input_dimension": input_dimension,
"output_dimension": output_dimension,
}
if n_input_points is None:
n_input_points = (
self.params.max_len
if not train
else self.rng.randint(
min(
self.params.min_len_per_dim * input_dimension,
self.params.max_len,
),
self.params.max_len + 1,
)
)
if train:
n_prediction_points = 0
else:
n_prediction_points = self.params.n_prediction_points
input_distribution_type_to_int = {"gaussian": 0, "uniform": 1}
if input_distribution_type is None:
input_distribution_type = (
"gaussian" if self.rng.random() < 0.5 else "uniform"
)
n_centroids = self.rng.randint(1, self.params.max_centroids)
if self.params.prediction_sigmas is None:
prediction_sigmas = []
else:
prediction_sigmas = [
float(sigma) for sigma in self.params.prediction_sigmas.split(",")
]
tree, datapoints = self.generator.generate_datapoints(
tree=tree,
rng=self.rng,
input_dimension=dimensions["input_dimension"],
n_input_points=n_input_points,
n_prediction_points=n_prediction_points,
prediction_sigmas=prediction_sigmas,
input_distribution_type=input_distribution_type,
n_centroids=n_centroids,
max_trials=self.params.max_trials,
)
if datapoints is None:
return {"tree": tree}, ["generation error"]
x_to_fit, y_to_fit = datapoints["fit"]
predict_datapoints = copy.deepcopy(datapoints)
del predict_datapoints["fit"]
all_outputs = np.concatenate([y for k, (x, y) in datapoints.items()])
try:
gamma = (
self.rng.uniform(0, self.params.train_noise_gamma)
if train
else self.params.eval_noise_gamma
)
norm = scipy.linalg.norm(
(np.abs(all_outputs) + 1e-100) / np.sqrt(all_outputs.shape[0])
)
noise = gamma * norm * np.random.randn(*y_to_fit.shape)
y_to_fit += noise
except Exception as e:
print(e, "norm computation error")
return {"tree": tree}, ["norm computation error"]
tree_encoded = self.equation_encoder.encode(tree)
skeleton_tree, _ = self.generator.function_to_skeleton(tree)
skeleton_tree_encoded = self.equation_encoder.encode(skeleton_tree)
assert all(
[x in self.equation_word2id for x in tree_encoded]
), "tree: {}\n encoded: {}".format(tree, tree_encoded)
if input_length_modulo != -1 and not train:
indexes_to_keep = np.arange(
min(input_length_modulo, self.params.max_len),
self.params.max_len + 1,
step=input_length_modulo,
)
else:
indexes_to_keep = [n_input_points]
X_to_fit, Y_to_fit = [], []
info = {
"n_input_points": [],
"n_unary_ops": [],
"n_binary_ops": [],
"d_in": [],
"d_out": [],
"input_distribution_type": [],
"n_centroids": [],
}
n_input_points = x_to_fit.shape[0]
for idx in indexes_to_keep:
_x_to_fit = x_to_fit[:idx] if idx > 0 else x_to_fit
_y_to_fit = y_to_fit[:idx] if idx > 0 else y_to_fit
X_to_fit.append(_x_to_fit)
Y_to_fit.append(_y_to_fit)
info["n_input_points"].append(idx)
info["n_unary_ops"].append(sum(nb_unary_ops))
info["n_binary_ops"].append(sum(nb_binary_ops))
info["d_in"].append(dimensions["input_dimension"])
info["d_out"].append(dimensions["output_dimension"])
info["input_distribution_type"].append(
input_distribution_type_to_int[input_distribution_type]
)
info["n_centroids"].append(n_centroids)
expr = {
"X_to_fit": X_to_fit,
"Y_to_fit": Y_to_fit,
"tree_encoded": tree_encoded,
"skeleton_tree_encoded": skeleton_tree_encoded,
"tree": tree,
"skeleton_tree": skeleton_tree,
"infos": info,
}
for k, (x, y) in predict_datapoints.items():
expr["x_to_" + k] = x
expr["y_to_" + k] = y
return expr, []
def create_train_iterator(self, task, data_path, params, **args):
"""
Create a dataset for this environment.
"""
logger.info(f"Creating train iterator for {task} ...")
dataset = EnvDataset(
self,
task,
train=True,
skip=self.params.queue_strategy is not None,
params=params,
path=(None if data_path is None else data_path[task][0]),
**args,
)
if self.params.queue_strategy is None:
collate_fn = dataset.collate_fn
else:
collate_fn = dataset.collate_reduce_padding(
dataset.collate_fn,
key_fn=lambda x: x["infos"]["input_sequence_length"]
+ len(
x["tree_encoded"]
),
max_size=self.max_size,
)
return DataLoader(
dataset,
timeout=(0 if params.num_workers == 0 else 3600),
batch_size=params.batch_size,
num_workers=(
params.num_workers
if data_path is None or params.num_workers == 0
else 1),
shuffle=False,
collate_fn=collate_fn,)
def create_test_iterator(
self,
data_type,
task,
data_path,
batch_size,
params,
size,
input_length_modulo,
**args,
):
"""
Create a dataset for this environment.
"""
logger.info(f"Creating {data_type} iterator for {task} ...")
dataset = EnvDataset(
self,
task,
train=False,
skip=False,
params=params,
path=(None if data_path is None else data_path[task][int(data_type[5:])]),
size=size,
type=data_type,
input_length_modulo=input_length_modulo,
**args,
)
return DataLoader(
dataset,
timeout=0,
batch_size=batch_size,
num_workers=1,
shuffle=False,
collate_fn=dataset.collate_fn,
)
@staticmethod
def register_args(parser):
"""
Register environment parameters.
"""
parser.add_argument(
"--queue_strategy",
type=str,
default=None,
help="in [precompute_batches, uniform_sampling, uniform_sampling_replacement]",
)
parser.add_argument("--collate_queue_size", type=int, default=2000)
parser.add_argument(
"--use_sympy",
type=bool_flag,
default=False,
help="Whether to use sympy parsing (basic simplification)",
)
parser.add_argument(
"--simplify",
type=bool_flag,
default=False,
help="Whether to use further sympy simplification",
)
parser.add_argument(
"--use_abs",
type=bool_flag,
default=False,
help="Whether to replace log and sqrt by log(abs) and sqrt(abs)",
)
# encoding
parser.add_argument(
"--operators_to_downsample",
type=str,
default="div_0,arcsin_0,arccos_0,tan_0.2,arctan_0.2,sqrt_5,pow2_3,inv_3",
help="Which operator to remove",
)
parser.add_argument(
"--operators_to_not_repeat",
type=str,
default="",
help="Which operator to not repeat",
)
parser.add_argument(
"--max_unary_depth",
type=int,
default=6,
help="Max number of operators inside unary",
)
parser.add_argument(
"--required_operators",
type=str,
default="",
help="Which operator to remove",
)
parser.add_argument(
"--extra_unary_operators",
type=str,
default="",
help="Extra unary operator to add to data generation",
)
parser.add_argument(
"--extra_binary_operators",
type=str,
default="",
help="Extra binary operator to add to data generation",
)
parser.add_argument(
"--extra_constants",
type=str,
default=None,
help="Additional int constants floats instead of ints",
)
parser.add_argument("--min_input_dimension", type=int, default=1)
parser.add_argument("--max_input_dimension", type=int, default=10)
parser.add_argument("--min_output_dimension", type=int, default=1)
parser.add_argument("--max_output_dimension", type=int, default=1)
parser.add_argument(
"--enforce_dim",
type=bool,
default=True,
help="should we enforce that we get as many examples of each dim ?",
)
parser.add_argument(
"--use_controller",
type=bool,
default=True,
help="should we enforce that we get as many examples of each dim ?",
)
parser.add_argument(
"--float_precision",
type=int,
default=3,
help="Number of digits in the mantissa",
)
parser.add_argument(
"--mantissa_len",
type=int,
default=1,
help="Number of tokens for the mantissa (must be a divisor or float_precision+1)",
)
parser.add_argument(
"--max_exponent", type=int, default=100, help="Maximal order of magnitude"
)
parser.add_argument(
"--max_exponent_prefactor",
type=int,
default=1,
help="Maximal order of magnitude in prefactors",
)
parser.add_argument(
"--max_token_len",
type=int,
default=0,
help="max size of tokenized sentences, 0 is no filtering",
)
parser.add_argument(
"--tokens_per_batch",
type=int,
default=10000,
help="max number of tokens per batch",
)
parser.add_argument(
"--pad_to_max_dim",
type=bool,
default=True,
help="should we pad inputs to the maximum dimension?",
)
# generator
parser.add_argument(
"--max_int",
type=int,
default=10,
help="Maximal integer in symbolic expressions",
)
parser.add_argument(
"--min_binary_ops_per_dim",
type=int,
default=0,
help="Min number of binary operators per input dimension",
)
parser.add_argument(
"--max_binary_ops_per_dim",
type=int,
default=1,
help="Max number of binary operators per input dimension",
)
parser.add_argument(
"--max_binary_ops_offset",
type=int,
default=4,
help="Offset for max number of binary operators",
)
parser.add_argument(
"--min_unary_ops", type=int, default=0, help="Min number of unary operators"
)
parser.add_argument(
"--max_unary_ops",
type=int,
default=4,
help="Max number of unary operators",
)
parser.add_argument(
"--min_op_prob",
type=float,
default=0.01,
help="Minimum probability of generating an example with given n_op, for our curriculum strategy",
)
parser.add_argument(
"--max_len", type=int, default=200, help="Max number of terms in the series"
)
parser.add_argument(
"--min_len_per_dim", type=int, default=5, help="Min number of terms per dim"
)
parser.add_argument(
"--max_centroids",
type=int,
default=10,
help="Max number of centroids for the input distribution",
)
parser.add_argument(
"--prob_const",
type=float,
default=0.0,
help="Probability to generate integer in leafs",
)
parser.add_argument(
"--reduce_num_constants",
type=bool,
default=True,
help="Use minimal amount of constants in eqs",
)
parser.add_argument(
"--use_skeleton",
type=bool,
default=False,
help="should we use a skeleton rather than functions with constants",
)
parser.add_argument(
"--prob_rand",
type=float,
default=0.0,
help="Probability to generate n in leafs",
)
parser.add_argument(
"--max_trials",
type=int,
default=1,
help="How many trials we have for a given function",
)
# evaluation
parser.add_argument(
"--n_prediction_points",
type=int,
default=200,
help="number of next terms to predict",
)
# parser.add_argument(
# "--prediction_sigmas",
# type=str,
# default="1,2,4,8,16",
# help="sigmas value for generation predicts",
# )
class EnvDataset(Dataset):
def __init__(
self,
env,
task,
train,
params,
path,
skip=False,
size=None,
type=None,
input_length_modulo=-1,
**args,
):
super(EnvDataset).__init__()
self.env = env
self.train = train
self.skip = skip
self.task = task
self.batch_size = params.batch_size
self.env_base_seed = params.env_base_seed
self.path = path
self.count = 0
self.remaining_data = 0
self.type = type
self.input_length_modulo = input_length_modulo
self.params = params
self.errors = defaultdict(int)
if "test_env_seed" in args:
self.test_env_seed = args["test_env_seed"]
else:
self.test_env_seed = None
if "env_info" in args:
self.env_info = args["env_info"]
else:
self.env_info = None
assert task in FunctionEnvironment.TRAINING_TASKS
assert size is None or not self.train
assert not params.batch_load or params.reload_size > 0
# batching
self.num_workers = params.num_workers
self.batch_size = params.batch_size
self.batch_load = params.batch_load
self.reload_size = params.reload_size
self.local_rank = params.local_rank
self.basepos = 0
self.nextpos = 0
self.seekpos = 0
self.collate_queue: Optional[List] = [] if self.train else None
self.collate_queue_size = params.collate_queue_size
self.tokens_per_batch = params.tokens_per_batch
# generation, or reloading from file
if path is not None:
assert os.path.isfile(path), "{} not found".format(path)
if params.batch_load and self.train:
self.load_chunk()
else:
logger.info(f"Loading data from {path} ...")
with io.open(path, mode="r", encoding="utf-8") as f:
if not train:
lines = []
for i, line in enumerate(f):
lines.append(json.loads(line.rstrip()))
else:
lines = []
for i, line in enumerate(f):
if i == params.reload_size:
break
if i % params.n_gpu_per_node == params.local_rank:
lines.append(json.loads(line.rstrip()))
self.data = lines
logger.info(f"Loaded {len(self.data)} equations from the disk.")
if self.train:
self.size = 1 << 60
elif size is None:
self.size = 10000 if path is None else len(self.data)
else:
assert size > 0
self.size = size
def collate_size_fn(self, batch: Dict) -> int:
if len(batch) == 0:
return 0
return len(batch) * max(
[seq["infos"]["input_sequence_length"] for seq in batch]
)
def load_chunk(self):
self.basepos = self.nextpos
logger.info(
f"Loading data from {self.path} ... seekpos {self.seekpos}, "
f"basepos {self.basepos}"
)
endfile = False
with io.open(self.path, mode="r", encoding="utf-8") as f:
f.seek(self.seekpos, 0)
lines = []
for i in range(self.reload_size):
line = f.readline()
if not line:
endfile = True
break
if i % self.params.n_gpu_per_node == self.local_rank:
lines.append(line.rstrip().split("|"))
self.seekpos = 0 if endfile else f.tell()
self.data = [xy.split("\t") for _, xy in lines]
self.data = [xy for xy in self.data if len(xy) == 2]
self.nextpos = self.basepos + len(self.data)
logger.info(
f"Loaded {len(self.data)} equations from the disk. seekpos {self.seekpos}, "
f"nextpos {self.nextpos}"
)
if len(self.data) == 0:
self.load_chunk()
def collate_reduce_padding(self, collate_fn, key_fn, max_size=None):
if self.params.queue_strategy == None:
return collate_fn
f = self.collate_reduce_padding_uniform
def wrapper(b):
try:
return f(collate_fn=collate_fn, key_fn=key_fn, max_size=max_size,)(b)
except ZMQNotReady:
return ZMQNotReadySample()
return wrapper
def _fill_queue(self, n: int, key_fn):
"""
Add elements to the queue (fill it entirely if `n == -1`)
Optionally sort it (if `key_fn` is not `None`)
Compute statistics
"""
assert self.train, "Not Implemented"
assert (
len(self.collate_queue) <= self.collate_queue_size
), "Problem with queue size"
# number of elements to add
n = self.collate_queue_size - len(self.collate_queue) if n == -1 else n
assert n > 0, "n<=0"
for _ in range(n):
if self.path is None:
sample = self.generate_sample()
else:
##TODO
assert (
False
), "need to finish implementing load dataset, but do not know how to handle read index"
sample = self.read_sample(index)
self.collate_queue.append(sample)
# sort sequences
if key_fn is not None:
self.collate_queue.sort(key=key_fn)
def collate_reduce_padding_uniform(self, collate_fn, key_fn, max_size=None):
"""
Stores a queue of COLLATE_QUEUE_SIZE candidates (created with warm-up).
When collating, insert into the queue then sort by key_fn.
Return a random range in collate_queue.
@param collate_fn: the final collate function to be used
@param key_fn: how elements should be sorted (input is an item)
@param size_fn: if a target batch size is wanted, function to compute the size (input is a batch)
@param max_size: if not None, overwrite params.batch.tokens
@return: a wrapped collate_fn
"""
def wrapped_collate(sequences: List):
if not self.train:
return collate_fn(sequences)
# fill queue
assert all(seq == SKIP_ITEM for seq in sequences)
assert (
len(self.collate_queue) < self.collate_queue_size
), "Queue size too big, current queue size ({}/{})".format(
len(self.collate_queue), self.collate_queue_size
)
self._fill_queue(n=-1, key_fn=key_fn)
assert (
len(self.collate_queue) == self.collate_queue_size
), "Fill has not been successful"
# select random index
before = self.env.rng.randint(-self.batch_size, len(self.collate_queue))
before = max(min(before, len(self.collate_queue) - self.batch_size), 0)
after = self.get_last_seq_id(before, max_size)
# create batch / remove sampled sequences from the queue
to_ret = collate_fn(self.collate_queue[before:after])
self.collate_queue = (
self.collate_queue[:before] + self.collate_queue[after:]
)
return to_ret
return wrapped_collate
def get_last_seq_id(self, before: int, max_size: Optional[int]) -> int:
"""
Return the last sequence ID that would allow to fit according to `size_fn`.
"""
max_size = self.tokens_per_batch if max_size is None else max_size
if max_size < 0:
after = before + self.batch_size
else:
after = before
while (
after < len(self.collate_queue)
and self.collate_size_fn(self.collate_queue[before:after]) < max_size
):
after += 1
# if we exceed `tokens_per_batch`, remove the last element
size = self.collate_size_fn(self.collate_queue[before:after])
if size > max_size:
if after > before + 1:
after -= 1
else:
logger.warning(
f"Exceeding tokens_per_batch: {size} "
f"({after - before} sequences)"
)
return after
def collate_fn(self, elements):
"""
Collate samples into a batch.
"""
samples = zip_dic(elements)
info_tensor = {
info_type: torch.LongTensor(samples["infos"][info_type])
for info_type in samples["infos"].keys()
}
samples["infos"] = info_tensor
if "input_sequence_length" in samples["infos"]:
del samples["infos"]["input_sequence_length"]
errors = copy.deepcopy(self.errors)
self.errors = defaultdict(int)
return samples, errors
def init_rng(self):
"""
Initialize random generator for training.
"""
if self.env.rng is not None:
return
if self.train:
worker_id = self.get_worker_id()
self.env.worker_id = worker_id
seed = [worker_id, self.params.global_rank, self.env_base_seed]
if self.env_info is not None:
seed += [self.env_info]
self.env.rng = np.random.RandomState(seed)
logger.info(
f"Initialized random generator for worker {worker_id}, with seed "
f"{seed} "