-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_synthetic.py
260 lines (193 loc) · 10.9 KB
/
train_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from references.engine import train_one_epoch, evaluate
from references import utils
from data_load import MNIST_Base
import matplotlib.pyplot as plt
import numpy as np
import random
import pickle
import time
import gc
import itertools
def seed_all(seed):
if not seed:
seed = 10
print("[ Using Seed : ", seed, " ]")
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_model(dataset = 'MNIST', trainable_backbone_layers = 5, source_dataset = 'None'):
num_classes_dict = {'MNIST' : 11, 'FASHION_MNIST' : 11, 'KMNIST' : 11, 'USPS' : 11, 'EMNIST': 27}
num_classes = num_classes_dict[dataset]
print('Building model for', dataset, 'with', num_classes, 'classes')
# Pretrained = False as we don't want to load COCO weights in this experiment
faster_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained = False,
pretrained_backbone= True,
trainable_backbone_layers=trainable_backbone_layers)
# get number of input features for the classifier
in_features = faster_model.roi_heads.box_predictor.cls_score.in_features
# Replace weights if using a pretrained model
if source_dataset is not None :
faster_model.roi_heads.box_predictor = FastRCNNPredictor(
in_features, num_classes_dict[source_dataset]) #As we load the weights from the pretrained model, head needs to have the same shape
file_path = f"/path/to/model/ft_models/5_layers/{source_dataset}/{source_dataset}iter_0.ptch"
print('Loading weights from ' , source_dataset)
param_dict_base = torch.load(file_path)
faster_model.load_state_dict(param_dict_base) #Load weights of the pretrained model
# replace the pre-trained head with a new one
faster_model.roi_heads.box_predictor = FastRCNNPredictor(
in_features, num_classes)
return faster_model
def train(model, dataset = 'MNIST', size =(128,128), num_epochs = 5, batch_size = 8, lr = 0.0001, g = None):
# train on the GPU or on the CPU, if a GPU is not available
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if dataset == 'MNIST':
dataset_train = MNIST_Base(root = '/path/to/data/mnist_detection/train', size = size)
dataset_test = MNIST_Base(root ='/path/to/data/mnist_detection/test', size = size)
if dataset == 'KMNIST':
dataset_train = MNIST_Base(root = '/path/to/data/kmnist_detection/train', size = size)
dataset_test = MNIST_Base(root ='/path/to/data/kmnist_detection/test', size = size)
if dataset == 'EMNIST':
dataset_train = MNIST_Base(root = '/path/to/data/emnist_detection/train', size = size)
dataset_test = MNIST_Base(root = '/path/to/data/emnist_detection/test', size = size)
if dataset == 'FASHION_MNIST':
dataset_train = MNIST_Base(root = '/path/to/data/fashionmnist_detection/train', size = size)
dataset_test = MNIST_Base(root ='/path/to/data/fashionmnist_detection/test', size = size)
if dataset == 'USPS':
dataset_train = MNIST_Base(root = '/path/to/data/usps_detection/train', size = size)
dataset_test = MNIST_Base(root ='/path/to/data/usps_detection/test', size = size)
# define training and validation data loaders
data_loader_train = torch.utils.data.DataLoader(
dataset_train, batch_size= batch_size, shuffle=True, num_workers=4,
collate_fn=utils.collate_fn, worker_init_fn = seed_worker, generator = g)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size= 1, shuffle=False, num_workers=4,
collate_fn=utils.collate_fn, worker_init_fn = seed_worker, generator = g)
# move model to the right device
model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(params, lr=lr)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1,
patience=10, threshold=0.0001, threshold_mode='rel',
cooldown=0, min_lr=0, eps=1e-08, verbose=False)
# Prepare the list containing the train and eval logs
avg_loss, avg_loss_classifier, avg_loss_box_reg, avg_loss_objectness, avg_loss_rpn_reg, iter_loss = ([] for i in range(6))
mAP_05_95, mAP_50, AR_1, AR_10, stats_list = ([] for i in range(5))
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_log = train_one_epoch(model, optimizer, data_loader_train, device, epoch, print_freq=100)
with torch.no_grad():
coco_evaluator = evaluate(model, data_loader_test, device=device)
lr_scheduler.step(coco_evaluator.coco_eval['bbox'].stats[1]) #LR schedule on mAP_50
#Convert MetricLogger and cocoEvaluator to lists
avg_loss.append(train_log.meters['loss'].avg)
avg_loss_classifier.append(train_log.meters['loss_classifier'].avg)
avg_loss_box_reg.append(train_log.meters['loss_box_reg'].avg)
avg_loss_objectness.append(train_log.meters['loss_objectness'].avg)
avg_loss_rpn_reg.append(train_log.meters['loss_rpn_box_reg'].avg)
iter_loss += train_log.meters['loss'].deque
stats = coco_evaluator.coco_eval['bbox'].stats
stats_list.append(stats)
mAP_05_95.append(stats[0])
mAP_50.append(stats[1])
AR_1.append(stats[6])
AR_10.append(stats[7])
#To avoid memory leakage
del train_log
del coco_evaluator
gc.collect()
train_log = {'avg_loss' : avg_loss, 'avg_loss_classifier' : avg_loss_classifier, 'avg_loss_box_reg' : avg_loss_box_reg,
'avg_loss_objectness' : avg_loss_objectness, 'avg_loss_rpn_reg' : avg_loss_rpn_reg,
'iter_loss' : iter_loss}
eval_log = {"mAP_05_95" : mAP_05_95, 'mAP_50' : mAP_50, 'AR_1' : AR_1, 'AR_10' : AR_10, 'stats' : stats_list}
print("That's it!")
return train_log, eval_log
def summary_plot(train_log, eval_log, dataset = None, savefig = False, dir = None, vers = 0):
fig,axes = plt.subplots(5,2, figsize = (12,17))
axes[0][0].plot(train_log['avg_loss'])
axes[0][0].set_title('Average loss per epoch')
axes[0][1].plot(train_log['iter_loss'])
axes[0][1].set_title('Average loss per 10 iterations')
axes[1][0].plot(train_log['avg_loss_classifier'])
axes[1][0].set_title('Average classifier loss per epoch')
axes[1][1].plot(train_log['avg_loss_box_reg'])
axes[1][1].set_title('Average bbox reg loss per epoch')
axes[2][0].plot(train_log['avg_loss_objectness'])
axes[2][0].set_title('Average objectness loss per epoch')
axes[2][1].plot(train_log['avg_loss_rpn_reg'])
axes[2][1].set_title('Average rpn box reg loss per epoch')
axes[3][0].plot(eval_log['mAP_05_95'])
axes[3][0].set_title('(AP) @[ IoU=0.50:0.95 per epoch')
axes[3][1].plot(eval_log['mAP_50'])
axes[3][1].set_title('(AP) @[ IoU=0.50 per epoch')
axes[4][0].plot(eval_log['AR_1'])
axes[4][0].set_title('(AR) maxDets = 1 per epoch')
axes[4][1].plot(eval_log['AR_10'])
axes[4][1].set_title('((AR) maxDets = 10 per epoch')
if dataset:
fig.suptitle('Metrics Summary for Resnet on ' + dataset)
if savefig:
plt.savefig(dir + dataset + 'iter_' + str(vers) +'.png')
def train(dataset = 'MNIST', seed = 6728131, vers = 0, n_epochs = [5], transfer = False, source_dataset = None):
seed_all(seed)
g = torch.Generator()
g = g.manual_seed(seed)
times = []
output_dir = 'path/to/dir'
dir = output_dir + "ft_models/base/" + dataset + '/'
# Load first and train only head (first step)
model = build_model(dataset = dataset, trainable_backbone_layers=0, source_dataset = source_dataset)
#To comment for one step training / or imageNet
start_time = time.time()
train_logger, eval_logger = train(dataset = dataset, model = model, num_epochs= n_epochs[0], lr = 0.0001, g= g)
total_time = time.time() - start_time
# Save weights and logs of the head
param_dict_base = model.state_dict()
torch.save(param_dict_base, dir + dataset + 'iter_' + str(vers) + '.ptch')
#To comment for one step training
#train_log, eval_log = convert_loggers(train_logger, eval_logger)
summary_plot(train_logger, eval_logger, dataset = dataset, savefig = True, dir = dir, vers = vers )
pickle.dump(train_logger, open(dir + dataset + '_train' + 'iter_' + str(vers) + '.pkl', "wb"))
pickle.dump(eval_logger, open(dir + dataset + '_eval' + 'iter_' + str(vers) + '.pkl', "wb"))
times.append(total_time)
# Delete model to free memory
del model
del param_dict_base
gc.collect()
if not transfer:
#Reload the weights of the pretrained head from first_step
param_dict_base = torch.load(output_dir + "ft_models/base/" + dataset + '/' + dataset + 'iter_' + str(vers) + '.ptch')
dir = output_dir + f"ft_models/5_layers/" + dataset + '/'
model = build_model(dataset = dataset, trainable_backbone_layers= 5)
model.load_state_dict(param_dict_base) # Load the parameters of pretrained head
start_time = time.time()
train_logger, eval_logger = train(dataset = dataset, model = model, num_epochs= n_epochs[1], lr = 0.00001, g=g)
total_time = time.time() - start_time
print("--- %s seconds ---" % (total_time))
times.append(total_time)
#Save Mode
torch.save(model.state_dict(), dir + dataset + 'iter_' + str(vers) + '.ptch')
#train_log, eval_log = convert_loggers(train_logger, eval_logger)
summary_plot(train_logger, eval_logger, dataset = dataset, savefig = True, dir = dir, vers = vers)
pickle.dump(train_logger, open(dir + f"from_{source_dataset}/"+ dataset + '_train' + 'iter_' + str(vers) + '.pkl', "wb"))
pickle.dump(eval_logger, open(dir + f"from_{source_dataset}/"+ dataset + '_eval' + 'iter_' + str(vers) + '.pkl', "wb"))
del model
gc.collect()
def main():
seed = 6728131
datasets = ['MNIST', 'KMNIST', 'EMNIST', 'FASHION_MNIST', 'USPS']
#Train "pretrained models"
for dataset in datasets :
train(dataset = dataset,n_epochs= [10,20], transfer = False, source_dataset= None)
#Transfer between each pair of datasets
for dataset_source, dataset_target in itertools.permutations(datasets, 2):
train(dataset = dataset_target, n_epochs= [5], transfer = True, source_dataset= dataset_source)