-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathcreation_functions.py
647 lines (510 loc) · 25.5 KB
/
creation_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
__all__ = [
"arange",
"asarray",
"empty",
"empty_like",
"eye",
"from_dlpack",
"full",
"full_like",
"linspace",
"meshgrid",
"ones",
"ones_like",
"tril",
"triu",
"zeros",
"zeros_like",
]
from ._types import (
List,
NestedSequence,
Optional,
SupportsBufferProtocol,
Tuple,
Union,
array,
device,
dtype,
)
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional array.
Parameters
----------
start: Union[int, float]
if ``stop`` is specified, the start of interval (inclusive); otherwise, the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``.
stop: Optional[Union[int, float]]
the end of the interval. Default: ``None``.
step: Union[int, float]
the distance between two adjacent elements (``out[i+1] - out[i]``). Must not be ``0``; may be negative, this results in an empty array if ``stop >= start``. Default: ``1``.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``start``, ``stop`` and ``step``. If those are all integers, the output array dtype *must* be the default integer dtype; if one or more have type ``float``, then the output array dtype *must* be the default real-valued floating-point data type. Default: ``None``.
device: Optional[device]
device on which to place the created array. Default: ``None``.
.. note::
This function cannot guarantee that the interval does not include the ``stop`` value in those cases where ``step`` is not an integer and floating-point rounding errors affect the length of the output array.
Returns
-------
out: array
a one-dimensional array containing evenly spaced values. The length of the output array *must* be ``ceil((stop-start)/step)`` if ``stop - start`` and ``step`` have the same sign, and length ``0`` otherwise.
"""
def asarray(
obj: Union[
array, bool, int, float, complex, NestedSequence, SupportsBufferProtocol
],
/,
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
copy: Optional[bool] = None,
) -> array:
r"""
Convert the input to an array.
Parameters
----------
obj: Union[array, bool, int, float, complex, NestedSequence[bool | int | float | complex], SupportsBufferProtocol]
object to be converted to an array. May be a Python scalar, a (possibly nested) sequence of Python scalars, or an object supporting the Python buffer protocol.
.. admonition:: Tip
:class: important
An object supporting the buffer protocol can be turned into a memoryview through ``memoryview(obj)``.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from the data type(s) in ``obj``. If all input values are Python scalars, then, in order of precedence,
- if all values are of type ``bool``, the output data type *must* be ``bool``.
- if all values are of type ``int`` or are a mixture of ``bool`` and ``int``, the output data type *must* be the default integer data type.
- if one or more values are ``complex`` numbers, the output data type *must* be the default complex floating-point data type.
- if one or more values are ``float``\s, the output data type *must* be the default real-valued floating-point data type.
Default: ``None``.
.. admonition:: Note
:class: note
If ``dtype`` is not ``None``, then array conversions should obey :ref:`type-promotion` rules. Conversions not specified according to :ref:`type-promotion` rules may or may not be permitted by a conforming array library. To perform an explicit cast, use :func:`array_api.astype`.
.. note::
If an input value exceeds the precision of the resolved output array data type, behavior is left unspecified and, thus, implementation-defined.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None`` and ``obj`` is an array, the output array device *must* be inferred from ``obj``. Default: ``None``.
copy: Optional[bool]
boolean indicating whether or not to copy the input. If ``True``, the function must always copy. If ``False``, the function must never copy for input which supports the buffer protocol and must raise a ``ValueError`` in case a copy would be necessary. If ``None``, the function must reuse existing memory buffer if possible and copy otherwise. Default: ``None``.
Returns
-------
out: array
an array containing the data from ``obj``.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def empty(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns an uninitialized array having a specified `shape`.
Parameters
----------
shape: Union[int, Tuple[int, ...]]
output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be the default real-valued floating-point data type. Default: ``None``.
device: Optional[device]
device on which to place the created array. Default: ``None``.
Returns
-------
out: array
an array containing uninitialized data.
"""
def empty_like(
x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None
) -> array:
"""
Returns an uninitialized array with the same ``shape`` as an input array ``x``.
Parameters
----------
x: array
input array from which to derive the output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``x``. Default: ``None``.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None``, the output array device *must* be inferred from ``x``. Default: ``None``.
Returns
-------
out: array
an array having the same shape as ``x`` and containing uninitialized data.
"""
def eye(
n_rows: int,
n_cols: Optional[int] = None,
/,
*,
k: int = 0,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
r"""
Returns a two-dimensional array with ones on the ``k``\th diagonal and zeros elsewhere.
.. note::
An output array having a complex floating-point data type *must* have the value ``1 + 0j`` along the ``k``\th diagonal and ``0 + 0j`` elsewhere.
Parameters
----------
n_rows: int
number of rows in the output array.
n_cols: Optional[int]
number of columns in the output array. If ``None``, the default number of columns in the output array is equal to ``n_rows``. Default: ``None``.
k: int
index of the diagonal. A positive value refers to an upper diagonal, a negative value to a lower diagonal, and ``0`` to the main diagonal. Default: ``0``.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be the default real-valued floating-point data type. Default: ``None``.
device: Optional[device]
device on which to place the created array. Default: ``None``.
Returns
-------
out: array
an array where all elements are equal to zero, except for the ``k``\th diagonal, whose values are equal to one.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def from_dlpack(
x: object,
/,
*,
device: Optional[device] = None,
copy: Optional[bool] = None,
) -> array:
"""
Returns a new array containing the data from another (array) object with a ``__dlpack__`` method.
Parameters
----------
x: object
input (array) object.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None`` and ``x`` supports DLPack, the output array *must* be on the same device as ``x``. Default: ``None``.
The v2023.12 standard only mandates that a compliant library *should* offer a way for ``from_dlpack`` to return an array
whose underlying memory is accessible to the Python interpreter, when the corresponding ``device`` is provided. If the
array library does not support such cases at all, the function must raise ``BufferError``. If a copy must be made to
enable this support but ``copy`` is set to ``False``, the function *must* raise ``ValueError``.
Other device kinds will be considered for standardization in a future version of this API standard.
copy: Optional[bool]
boolean indicating whether or not to copy the input. If ``True``, the function must always copy. If ``False``, the function must never copy, and raise ``BufferError`` in case a copy is deemed necessary (e.g. if a cross-device data movement is requested, and it is not possible without a copy). If ``None``, the function must reuse the existing memory buffer if possible and copy otherwise. Default: ``None``.
Returns
-------
out: array
an array containing the data in ``x``.
.. admonition:: Note
:class: note
The returned array may be either a copy or a view. See :ref:`data-interchange` for details.
Raises
------
BufferError
The ``__dlpack__`` and ``__dlpack_device__`` methods on the input array
may raise ``BufferError`` when the data cannot be exported as DLPack
(e.g., incompatible dtype, strides, or device). It may also raise other errors
when export fails for other reasons (e.g., not enough memory available
to materialize the data). ``from_dlpack`` *must* propagate such
exceptions.
AttributeError
If the ``__dlpack__`` and ``__dlpack_device__`` methods are not present
on the input array. This may happen for libraries that are never able
to export their data with DLPack.
ValueError
If data exchange is possible via an explicit copy but ``copy`` is set to ``False``.
Notes
-----
See :meth:`array.__dlpack__` for implementation suggestions for `from_dlpack` in
order to handle DLPack versioning correctly.
A way to move data from two array libraries to the same device (assumed supported by both libraries) in
a library-agnostic fashion is illustrated below:
.. code:: python
def func(x, y):
xp_x = x.__array_namespace__()
xp_y = y.__array_namespace__()
# Other functions than `from_dlpack` only work if both arrays are from the same library. So if
# `y` is from a different one than `x`, let's convert `y` into an array of the same type as `x`:
if not xp_x == xp_y:
y = xp_x.from_dlpack(y, copy=True, device=x.device)
# From now on use `xp_x.xxxxx` functions, as both arrays are from the library `xp_x`
...
.. versionchanged:: 2023.12
Required exceptions to address unsupported use cases.
.. versionchanged:: 2023.12
Added device and copy support.
"""
def full(
shape: Union[int, Tuple[int, ...]],
fill_value: Union[bool, int, float, complex],
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns a new array having a specified ``shape`` and filled with ``fill_value``.
Parameters
----------
shape: Union[int, Tuple[int, ...]]
output array shape.
fill_value: Union[bool, int, float, complex]
fill value.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``fill_value`` according to the following rules:
- If the fill value is an ``int``, the output array data type *must* be the default integer data type.
- If the fill value is a ``float``, the output array data type *must* be the default real-valued floating-point data type.
- If the fill value is a ``complex`` number, the output array data type *must* be the default complex floating-point data type.
- If the fill value is a ``bool``, the output array *must* have a boolean data type. Default: ``None``.
.. note::
If the ``fill_value`` exceeds the precision of the resolved default output array data type, behavior is left unspecified and, thus, implementation-defined.
device: Optional[device]
device on which to place the created array. Default: ``None``.
Returns
-------
out: array
an array where every element is equal to ``fill_value``.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def full_like(
x: array,
/,
fill_value: Union[bool, int, float, complex],
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns a new array filled with ``fill_value`` and having the same ``shape`` as an input array ``x``.
Parameters
----------
x: array
input array from which to derive the output array shape.
fill_value: Union[bool, int, float, complex]
fill value.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``x``. Default: ``None``.
.. note::
If the ``fill_value`` exceeds the precision of the resolved output array data type, behavior is unspecified and, thus, implementation-defined.
.. note::
If the ``fill_value`` has a data type which is not of the same data type kind (boolean, integer, or floating-point) as the resolved output array data type (see :ref:`type-promotion`), behavior is unspecified and, thus, implementation-defined.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None``, the output array device *must* be inferred from ``x``. Default: ``None``.
Returns
-------
out: array
an array having the same shape as ``x`` and where every element is equal to ``fill_value``.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def linspace(
start: Union[int, float, complex],
stop: Union[int, float, complex],
/,
num: int,
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
endpoint: bool = True,
) -> array:
r"""
Returns evenly spaced numbers over a specified interval.
Let :math:`N` be the number of generated values (which is either ``num`` or ``num+1`` depending on whether ``endpoint`` is ``True`` or ``False``, respectively). For real-valued output arrays, the spacing between values is given by
.. math::
\Delta_{\textrm{real}} = \frac{\textrm{stop} - \textrm{start}}{N - 1}
For complex output arrays, let ``a = real(start)``, ``b = imag(start)``, ``c = real(stop)``, and ``d = imag(stop)``. The spacing between complex values is given by
.. math::
\Delta_{\textrm{complex}} = \frac{c-a}{N-1} + \frac{d-b}{N-1} j
Parameters
----------
start: Union[int, float, complex]
the start of the interval.
stop: Union[int, float, complex]
the end of the interval. If ``endpoint`` is ``False``, the function *must* generate a sequence of ``num+1`` evenly spaced numbers starting with ``start`` and ending with ``stop`` and exclude the ``stop`` from the returned array such that the returned array consists of evenly spaced numbers over the half-open interval ``[start, stop)``. If ``endpoint`` is ``True``, the output array *must* consist of evenly spaced numbers over the closed interval ``[start, stop]``. Default: ``True``.
.. note::
The step size changes when `endpoint` is `False`.
num: int
number of samples. Must be a nonnegative integer value.
dtype: Optional[dtype]
output array data type. Should be a floating-point data type. If ``dtype`` is ``None``,
- if either ``start`` or ``stop`` is a ``complex`` number, the output data type *must* be the default complex floating-point data type.
- if both ``start`` and ``stop`` are real-valued, the output data type *must* be the default real-valued floating-point data type.
Default: ``None``.
.. admonition:: Note
:class: note
If ``dtype`` is not ``None``, conversion of ``start`` and ``stop`` should obey :ref:`type-promotion` rules. Conversions not specified according to :ref:`type-promotion` rules may or may not be permitted by a conforming array library.
device: Optional[device]
device on which to place the created array. Default: ``None``.
endpoint: bool
boolean indicating whether to include ``stop`` in the interval. Default: ``True``.
Returns
-------
out: array
a one-dimensional array containing evenly spaced values.
Notes
-----
.. note::
While this specification recommends that this function only return arrays having a floating-point data type, specification-compliant array libraries may choose to support output arrays having an integer data type (e.g., due to backward compatibility concerns). However, function behavior when generating integer output arrays is unspecified and, thus, is implementation-defined. Accordingly, using this function to generate integer output arrays is not portable.
.. note::
As mixed data type promotion is implementation-defined, behavior when ``start`` or ``stop`` exceeds the maximum safe integer of an output floating-point data type is implementation-defined. An implementation may choose to overflow or raise an exception.
.. versionchanged:: 2022.12
Added complex data type support.
"""
def meshgrid(*arrays: array, indexing: str = "xy") -> List[array]:
"""
Returns coordinate matrices from coordinate vectors.
Parameters
----------
arrays: array
an arbitrary number of one-dimensional arrays representing grid coordinates. Each array *should* have the same numeric data type.
indexing: str
Cartesian ``'xy'`` or matrix ``'ij'`` indexing of output. If provided zero or one one-dimensional vector(s) (i.e., the zero- and one-dimensional cases, respectively), the ``indexing`` keyword has no effect and *should* be ignored. Default: ``'xy'``.
Returns
-------
out: List[array]
list of N arrays, where ``N`` is the number of provided one-dimensional input arrays. Each returned array *must* have rank ``N``. For ``N`` one-dimensional arrays having lengths ``Ni = len(xi)``,
- if matrix indexing ``ij``, then each returned array *must* have the shape ``(N1, N2, N3, ..., Nn)``.
- if Cartesian indexing ``xy``, then each returned array *must* have shape ``(N2, N1, N3, ..., Nn)``.
Accordingly, for the two-dimensional case with input one-dimensional arrays of length ``M`` and ``N``, if matrix indexing ``ij``, then each returned array *must* have shape ``(M, N)``, and, if Cartesian indexing ``xy``, then each returned array *must* have shape ``(N, M)``.
Similarly, for the three-dimensional case with input one-dimensional arrays of length ``M``, ``N``, and ``P``, if matrix indexing ``ij``, then each returned array *must* have shape ``(M, N, P)``, and, if Cartesian indexing ``xy``, then each returned array *must* have shape ``(N, M, P)``.
Each returned array *should* have the same data type as the input arrays.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def ones(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns a new array having a specified ``shape`` and filled with ones.
.. note::
An output array having a complex floating-point data type *must* contain complex numbers having a real component equal to one and an imaginary component equal to zero (i.e., ``1 + 0j``).
Parameters
----------
shape: Union[int, Tuple[int, ...]]
output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be the default real-valued floating-point data type. Default: ``None``.
device: Optional[device]
device on which to place the created array. Default: ``None``.
Returns
-------
out: array
an array containing ones.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def ones_like(
x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None
) -> array:
"""
Returns a new array filled with ones and having the same ``shape`` as an input array ``x``.
.. note::
An output array having a complex floating-point data type *must* contain complex numbers having a real component equal to one and an imaginary component equal to zero (i.e., ``1 + 0j``).
Parameters
----------
x: array
input array from which to derive the output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``x``. Default: ``None``.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None``, the output array device *must* be inferred from ``x``. Default: ``None``.
Returns
-------
out: array
an array having the same shape as ``x`` and filled with ones.
Notes
-----
.. versionchanged:: 2022.12
Added complex data type support.
"""
def tril(x: array, /, *, k: int = 0) -> array:
"""
Returns the lower triangular part of a matrix (or a stack of matrices) ``x``.
.. note::
The lower triangular part of the matrix is defined as the elements on and below the specified diagonal ``k``.
Parameters
----------
x: array
input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices.
k: int
diagonal above which to zero elements. If ``k = 0``, the diagonal is the main diagonal. If ``k < 0``, the diagonal is below the main diagonal. If ``k > 0``, the diagonal is above the main diagonal. Default: ``0``.
.. note::
The main diagonal is defined as the set of indices ``{(i, i)}`` for ``i`` on the interval ``[0, min(M, N) - 1]``.
Returns
-------
out: array
an array containing the lower triangular part(s). The returned array *must* have the same shape and data type as ``x``. All elements above the specified diagonal ``k`` *must* be zeroed. The returned array *should* be allocated on the same device as ``x``.
"""
def triu(x: array, /, *, k: int = 0) -> array:
"""
Returns the upper triangular part of a matrix (or a stack of matrices) ``x``.
.. note::
The upper triangular part of the matrix is defined as the elements on and above the specified diagonal ``k``.
Parameters
----------
x: array
input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices.
k: int
diagonal below which to zero elements. If ``k = 0``, the diagonal is the main diagonal. If ``k < 0``, the diagonal is below the main diagonal. If ``k > 0``, the diagonal is above the main diagonal. Default: ``0``.
.. note::
The main diagonal is defined as the set of indices ``{(i, i)}`` for ``i`` on the interval ``[0, min(M, N) - 1]``.
Returns
-------
out: array
an array containing the upper triangular part(s). The returned array *must* have the same shape and data type as ``x``. All elements below the specified diagonal ``k`` *must* be zeroed. The returned array *should* be allocated on the same device as ``x``.
"""
def zeros(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
) -> array:
"""
Returns a new array having a specified ``shape`` and filled with zeros.
Parameters
----------
shape: Union[int, Tuple[int, ...]]
output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be the default real-valued floating-point data type. Default: ``None``.
device: Optional[device]
device on which to place the created array. Default: ``None``.
Returns
-------
out: array
an array containing zeros.
"""
def zeros_like(
x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None
) -> array:
"""
Returns a new array filled with zeros and having the same ``shape`` as an input array ``x``.
Parameters
----------
x: array
input array from which to derive the output array shape.
dtype: Optional[dtype]
output array data type. If ``dtype`` is ``None``, the output array data type *must* be inferred from ``x``. Default: ``None``.
device: Optional[device]
device on which to place the created array. If ``device`` is ``None``, the output array device *must* be inferred from ``x``. Default: ``None``.
Returns
-------
out: array
an array having the same shape as ``x`` and filled with zeros.
"""