-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlinalg.py
135 lines (101 loc) · 4.1 KB
/
linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import paddle
array = paddle.Tensor
from paddle import dtype as Dtype
from typing import Optional, Union, Tuple, Literal
inf = float("inf")
from ._aliases import _fix_promotion, sum
from paddle.linalg import * # noqa: F403
# paddle.linalg doesn't define __all__
# from paddle.linalg import __all__ as linalg_all
from paddle import linalg as paddle_linalg
linalg_all = [i for i in dir(paddle_linalg) if not i.startswith("_")]
# outer is implemented in paddle but aren't in the linalg namespace
from paddle import outer
# These functions are in both the main and linalg namespaces
from ._aliases import matmul, matrix_transpose, tensordot
# Note: paddle.linalg.cross does not default to axis=-1 (it defaults to the
# first axis with size 3)
# paddle.cross also does not support broadcasting when it would add new
# dimensions
def cross(x1: array, x2: array, /, *, axis: int = -1) -> array:
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
if not (-min(x1.ndim, x2.ndim) <= axis < max(x1.ndim, x2.ndim)):
raise ValueError(
f"axis {axis} out of bounds for cross product of arrays with shapes {x1.shape} and {x2.shape}"
)
if not (x1.shape[axis] == x2.shape[axis] == 3):
raise ValueError(
f"cross product axis must have size 3, got {x1.shape[axis]} and {x2.shape[axis]}"
)
x1, x2 = paddle.broadcast_tensors(x1, x2)
return paddle_linalg.cross(x1, x2, axis=axis)
def vecdot(x1: array, x2: array, /, *, axis: int = -1, **kwargs) -> array:
from ._aliases import isdtype
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
# paddle.linalg.vecdot incorrectly allows broadcasting along the contracted dimension
if x1.shape[axis] != x2.shape[axis]:
raise ValueError("x1 and x2 must have the same size along the given axis")
# paddle.linalg.vecdot doesn't support integer dtypes
if isdtype(x1.dtype, "integral") or isdtype(x2.dtype, "integral"):
if kwargs:
raise RuntimeError("vecdot kwargs not supported for integral dtypes")
x1_ = paddle.moveaxis(x1, axis, -1)
x2_ = paddle.moveaxis(x2, axis, -1)
x1_, x2_ = paddle.broadcast_tensors(x1_, x2_)
res = x1_[..., None, :] @ x2_[..., None]
return res[..., 0, 0]
return paddle.linalg.vecdot(x1, x2, axis=axis, **kwargs)
def solve(x1: array, x2: array, /, **kwargs) -> array:
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
if x2.ndim != 1 and x1.ndim - 1 == x2.ndim and x1.shape[:-1] == x2.shape:
x2 = x2[None]
return paddle.linalg.solve(x1, x2, **kwargs)
# paddle.trace doesn't support the offset argument and doesn't support stacking
def trace(x: array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> array:
# Use our wrapped sum to make sure it does upcasting correctly
return sum(
paddle.diagonal(x, offset=offset, dim1=-2, dim2=-1), axis=-1, dtype=dtype
)
def vector_norm(
x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
ord: Union[int, float, Literal[inf, -inf]] = 2,
**kwargs,
) -> array:
# paddle.vector_norm incorrectly treats axis=() the same as axis=None
if axis == ():
out = kwargs.get("out")
if out is None:
dtype = None
if x.dtype == paddle.complex64:
dtype = paddle.float32
elif x.dtype == paddle.complex128:
dtype = paddle.float64
out = paddle.zeros_like(x, dtype=dtype)
# The norm of a single scalar works out to abs(x) in every case except
# for ord=0, which is x != 0.
if ord == 0:
out[:] = x != 0
else:
out[:] = paddle.abs(x)
return out
return paddle.linalg.vector_norm(x, p=ord, axis=axis, keepdim=keepdims, **kwargs)
__all__ = linalg_all + [
"outer",
"matmul",
"matrix_transpose",
"tensordot",
"cross",
"vecdot",
"solve",
"trace",
"vector_norm",
]
_all_ignore = ["paddle_linalg", "sum"]
del linalg_all